19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

βF i (X )<br />

40<br />

20<br />

0<br />

−20<br />

1<br />

2<br />

βλ 1 = 40<br />

α 1 = 1<br />

−40 −20 0 20 40<br />

−100 0<br />

βX βX<br />

As a comb<strong>in</strong>ation of these two effects, plus the existence of the fluctuation<br />

boundary, the free energy surfaces are asymmetric with a steeper branch on<br />

the side of the fluctuation boundary X0. The other branch is less steep tend<strong>in</strong>g<br />

to a l<strong>in</strong>ear dependence at large X (Figure 7). The m<strong>in</strong>ima of the <strong>in</strong>itial and f<strong>in</strong>al<br />

free energy surfaces get closer to each other and to the band boundary with<br />

decreas<strong>in</strong>g a1 and l1. The cross<strong>in</strong>g po<strong>in</strong>t then moves to the <strong>in</strong>verted ET region<br />

where the free energies are nearly l<strong>in</strong>ear functions of the reaction coord<strong>in</strong>ate.<br />

The ET activation energy follows from Eq. [66]<br />

F act<br />

i ¼ Fið0Þ F0i<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

¼jaij j F0 l1a2 1 =a2j<br />

q ffiffiffiffiffiffiffiffiffiffi<br />

jaijli q 2<br />

Equation [79] produces the MH quadratic energy gap law at small<br />

j F0j ja1l1j and yields a l<strong>in</strong>ear dependence of the activation energy on<br />

the equilibrium free energy gap at j F0 l1a 2 1 =a2j jaijli.<br />

A l<strong>in</strong>ear energy gap law is by no means unusual <strong>in</strong> ET k<strong>in</strong>etics. It is quite<br />

often encountered at large equilibrium energy gaps. Experimental observations<br />

of the l<strong>in</strong>ear energy gap law are made for <strong>in</strong>termolecular 62 as well as <strong>in</strong>tramolecular<br />

63 organic donor–acceptor complexes, <strong>in</strong> b<strong>in</strong>uclear metal–metal CT<br />

complexes, 16 and <strong>in</strong> CT crystals. 64 It is commonly expla<strong>in</strong>ed <strong>in</strong> terms of the<br />

weak coupl<strong>in</strong>g limit of the theory of vibronic band shapes yield<strong>in</strong>g the<br />

l<strong>in</strong>ear-logarithmic dependence proportional to Fi ln Fi on the vertical<br />

energy gap Fi. 17 On the contrary, a strictly l<strong>in</strong>ear dependence proportional<br />

to Fi arises from the Q model.<br />

To complete the Q model, one needs to relate the model parameters to<br />

spectral observables. Already, the reorganization energies li are directly<br />

related to the solvent-<strong>in</strong>duced <strong>in</strong>homogeneous widths of absorption (i ¼ 1)<br />

80<br />

40<br />

0<br />

Beyond the Parabolas 173<br />

2<br />

1<br />

βλ 1 = 40<br />

α 1 = 4<br />

Figure 7 The free energy surfaces F1ðXÞ (1) and F2ðXÞ (2) at various a1; I ¼ 0. The<br />

dashed l<strong>in</strong>e <strong>in</strong>dicates the position of the fluctuation boundary X0.<br />

½79Š

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!