19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

142 Polarizability <strong>in</strong> Computer Simulations<br />

158. S.-B. Zhu, S. S<strong>in</strong>gh, and G. W. Rob<strong>in</strong>son, J. Chem. Phys., 95, 2791–2799 (1991). A New<br />

Flexible/Polarizable Water Model.<br />

159. M. Wilson and P. A. Madden, J. Phys.: Condens. Matter, 5, 2687–2706 (1993). Polarization<br />

Effects <strong>in</strong> Ionic Systems from First Pr<strong>in</strong>ciples.<br />

160. T. Campbell, R. K. Kalia, A. Nakano, P. Vashista, S. Ogata, and S. Rodgers, Phys. Rev. Lett.,<br />

82, 4866–4869 (1999). Dynamics of Oxidation of Alum<strong>in</strong>um Nanoclusters Us<strong>in</strong>g Variable<br />

Charge Molecular-Dynamics Simulation on Parallel Computers.<br />

161. D. J. Keffer and J. W. M<strong>in</strong>tmire, Int. J. Quantum Chem., 80, 733–742 (2000). Efficient<br />

Parallel Algorithms for Molecular Dynamics Simulations Us<strong>in</strong>g Variable Charge Transfer<br />

Electrostatic Potentials.<br />

162. M. Medeiros and M. E. Costas, J. Chem. Phys., 107, 2012–2019 (1997). Gibbs Ensemble<br />

Monte Carlo Simulation of the Properties of Water with a Fluctuat<strong>in</strong>g Charges Model.<br />

163. A. Nakano, Comput. Phys. Commun., 104, 59–69 (1997). Parallel Multilevel Preconditioned<br />

Conjugate-Gradient Approach to Variable-Charge Molecular Dynamics.<br />

164. S. W. Rick, <strong>in</strong> Simulation and Theory of Electrostatic Interactions <strong>in</strong> Solution, L. R. Pratt and<br />

G. Hummer, Eds., American Institute of Physics, Melville, NY, 1999, pp. 114–126. The<br />

Influence of Electrostatic Truncation on Simulations of Polarizable Systems.<br />

165. B. Chen, J. J. Potoff, and J. I. Siepmann, J. Phys. Chem. B, 104, 2378–2390 (2000). Adiabatic<br />

Nuclear and Electronic Sampl<strong>in</strong>g Monte Carlo Simulations <strong>in</strong> the Gibbs Ensemble: Application<br />

to Polarizable Force Fields for Water.<br />

166. H. A. Stern, F. Rittner, B. J. Berne, and R. A. Friesner, J. Chem. Phys., 115, 2237–2251 (2001).<br />

Comb<strong>in</strong>ed Fluctuat<strong>in</strong>g-Charge and Polarizable Dipole Models: Application to a Five-Site<br />

Water Potential Function.<br />

167. U. D<strong>in</strong>ur, J. Phys. Chem., 97, 7894–7898 (1993). Molecular Polarizabilities from Electronegativity<br />

Equalization Models.<br />

168. S. W. Rick and B. J. Berne, J. Phys. Chem. B, 101, 10488 (1997). The Free Energy of the<br />

Hydrophobic Interaction from Molecular Dynamics Simulations: the Effects of Solute and<br />

Solvent Polarizability.<br />

169. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford<br />

University Press, Oxford, UK, 1989.<br />

170. L. J. Bartolotti and K. Flurchick, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and<br />

D. B. Boyd, Eds., VCH Publishers, Vol. 7, pp. <strong>18</strong>7–216 (1996). An Introduction to Density<br />

Functional Theory. A. St-Amant, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz<br />

and D. B. Boyd, Eds., VCH Publishers, New York, Vol. 7, pp. 217–259. Density Functional<br />

Methods <strong>in</strong> Biomolecular Model<strong>in</strong>g.<br />

171. P. Itskowitz and M. L. Berkowitz, J. Phys. Chem. A, 101, 5687–5691 (1997). Chemical<br />

Potential Equalization Pr<strong>in</strong>ciple: Direct Approach from Density Functional Theory.<br />

172. D. Borgis and A. Staib, Chem. Phys. Lett., 238, <strong>18</strong>7–192 (1995). A Semiempirical Quantum<br />

Polarization Model for Water.<br />

173. J. Gao, J. Phys. Chem. B, 101, 657–663 (1997). Toward a Molecular Orbital Derived<br />

Empirical Potential for Liquid Simulations.<br />

174. J. Gao, J. Chem. Phys., 109, 2346–2354 (1998). A Molecular-Orbital Derived Polarization<br />

Potential for Liquid Water.<br />

175. B. D. Bursulaya and H. J. Kim, J. Chem. Phys., 108, 3277–3285 (1998). Generalized<br />

Molecular Mechanics Includ<strong>in</strong>g Quantum Electronic Structure Variation of Polar Solvents.<br />

I. Theoretical Formulation via a Truncated Adiabatic Basis Set Description.<br />

176. B. D. Bursulaya, J. Jeon, D. A. Zichi, and H. J. Kim, J. Chem. Phys., 108, 3286–3295 (1998).<br />

Generalized Molecular Mechanics Includ<strong>in</strong>g Quantum Electronic Structure Variation of<br />

Polar Solvents. II. A Molecular Dynamics Simulation Study of Water.<br />

177. A. E. Lefohn, M. Ovch<strong>in</strong>nikov, and G. A. Voth, J. Phys. Chem. B, 105, 6628–6637 (2001). A<br />

Multistate Empirical Valence Bond Approach to a Polarizable and Flexible Water Model.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!