19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>18</strong>6 Charge-Transfer Reactions <strong>in</strong> Condensed Phases<br />

Here ‘‘<strong>in</strong>v’’ stands for an <strong>in</strong>variant <strong>in</strong> respect to transformation consistent with<br />

the symmetry of the system. For quantum mechanical operators, this means<br />

unitary transformations. The parameter e <strong>in</strong> Eq. [107] quantifies the extent<br />

of mix<strong>in</strong>g between two adiabatic gas-phase states <strong>in</strong>duced by the <strong>in</strong>teraction<br />

with the solvent. For a dipolar solute, it is determ<strong>in</strong>ed through the adiabatic<br />

differential and the transition dipole moments<br />

e ¼ 1 þ 4m2 12<br />

m 2 12<br />

1=2<br />

½113Š<br />

The differential and transition dipoles can be determ<strong>in</strong>ed from experiment: the<br />

former from the Stark spectroscopy 75,76 and the latter from absorption or<br />

emission <strong>in</strong>tensities (see below).<br />

The parameter e should not be confused with the actual difference <strong>in</strong><br />

electronic occupation numbers of the two CT states. When the eigenfunctions<br />

f ~ fþðY adÞ; ~ f ðYadÞg correspond<strong>in</strong>g to the eigenstates F ðYadÞ are represented<br />

as a l<strong>in</strong>ear comb<strong>in</strong>ation of the wave functions of the adiabatic basis, ff1; f2g, ~f þðY ad ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

Þ¼ 1 f ðYad q<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

Þf1<br />

þ f ðYad q<br />

Þf2<br />

~f ðY ad ffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

Þ¼ f ðYad q<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

Þf1<br />

þ 1 f ðYad q<br />

½114Š<br />

Þ<br />

then the parameter f ðY ad Þ def<strong>in</strong>es the occupation number of the adiabatic state<br />

1 on the lower CT free energy surface at the reaction coord<strong>in</strong>ate Y ad . For CT<br />

transitions <strong>in</strong> the normal region, two equilibrium m<strong>in</strong>ima are located on the<br />

lower CT free energy surface. The occupation number difference <strong>in</strong> the f<strong>in</strong>al<br />

and <strong>in</strong>itial states can thus be def<strong>in</strong>ed as<br />

z ¼j1 f ðY 1 Þ f ðY 2 Þj ½115Š<br />

where Y 1 and Y 2 are two m<strong>in</strong>ima positioned on the lower CT surface<br />

(Figure 12). In contrast, when transitions between the lower and upper CT<br />

surfaces occur <strong>in</strong> the <strong>in</strong>verted CT region, the occupation number difference<br />

becomes<br />

f 2<br />

z ¼jf ðY þ Þ f ðY Þj ½116Š<br />

where now Y þ and Y def<strong>in</strong>e the positions of equilibrium on the upper and<br />

lower CT surfaces, respectively (Figure 13). Figure 14 illustrates the difference<br />

<strong>in</strong> the dependence of the occupation number difference on e <strong>in</strong> the normal<br />

and <strong>in</strong>verted CT regions. The parameter z is <strong>in</strong>deed close to e for reactions<br />

with j F I s j lI . As the absolute value of the equilibrium energy gap <strong>in</strong>creases,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!