19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

References 85<br />

172. C. Lemmen, T. Lengauer, and G. Klebe, J. Med. Chem., 41, 4502 (1998). FlexS: A Method for<br />

Fast Flexible Ligand Superposition.<br />

173. C. Lemmen, A. Zien, R. Zimmer, and T. Lengauer, Abstracts of the Pacific Symposium on<br />

Biocomput<strong>in</strong>g, Big Island, Hawaii, January 4–9, 1999, pp. 482–493. Application of Parameter<br />

Optimization to Molecular Comparison.<br />

174. G. R. Desiraju and T. Ste<strong>in</strong>er, The Weak Hydrogen Bond <strong>in</strong> <strong>Chemistry</strong> and Biology, Oxford<br />

University Press, Oxford, UK, 1999.<br />

175. G. Park<strong>in</strong>son, A. Gunasekera, J. Vojtechovsky, X. Zhang, T. Kunkel, H. Berman, and R. H.<br />

Ebright, Nature Struct. Biol., 3, 837 (1996). Aromatic Hydrogen Bond <strong>in</strong> Sequence-Specific<br />

Prote<strong>in</strong> DNA Recognition.<br />

176. J. P. Gallivan and D. A. Dougherty, Proc. Natl. Acad. Sci. U.S.A., 96, 9459 (1999). Cation–p<br />

Interactions <strong>in</strong> Structural Biology.<br />

177. J. P. Gallivan and D. A. Dougherty, J. Am. Chem. Soc., 122, 870 (2000). A <strong>Computational</strong><br />

Study of Cation–p Interactions vs. Salt Bridges <strong>in</strong> Aqueous Media: Implications for Prote<strong>in</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g.<br />

178. G. B. McGaughey, M. Gagné, and A. K. Rappé, J. Biol. Chem., 273, 15458 (1998). p-Stack<strong>in</strong>g<br />

Interactions.<br />

179. C. Chipot, R. Jaffe, B. Maigret, D. A. Pearlman, and P. A. Kollman, J. Am. Chem. Soc., 1<strong>18</strong>,<br />

11217 (1996). The Benzene Dimer: A Good Model for p–p Interactions <strong>in</strong> Prote<strong>in</strong>s? A<br />

Comparison Between the Benzene and the Toluene Dimers <strong>in</strong> the Gas Phase and <strong>in</strong> Aqueous<br />

Solution.<br />

<strong>18</strong>0. T. G. Davies, R. E. Hubbard, and J. R. H. Tame, Prote<strong>in</strong> Sci., 8, 1432 (1999). Relat<strong>in</strong>g<br />

Structure to Thermodynamics: The Crystal Structures and B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ity of Eight OppA-<br />

Peptide Complexes.<br />

<strong>18</strong>1. G. Klebe, F. Dullweber, and H.-J. Boehm, <strong>in</strong> Drug-Receptor Thermodynamics: Introduction<br />

and Applications, R. B. Raffa, Ed., Wiley, Chichester, UK, 2001, pp. 83–103. Thermodynamic<br />

Models of Drug-Receptor Interactions: A General Introduction.<br />

<strong>18</strong>2. S. Ha, R. Andreani, A. Robb<strong>in</strong>s, and I. Muegge, J. Comput.-Aided Mol. Design, 14, 435<br />

(2000). Evaluation of Dock<strong>in</strong>g/Scor<strong>in</strong>g Approaches: A Comparative Study Based on MMP3<br />

Inhibitors.<br />

<strong>18</strong>3. I. Massova and P. A. Kollman, Perspect. Drug Discovery Design, <strong>18</strong>, 113 (2000). Comb<strong>in</strong>ed<br />

Molecular Mechanical and Cont<strong>in</strong>uum Solvent Approach (MM-PBSA/GBSA) to Predict<br />

Ligand B<strong>in</strong>d<strong>in</strong>g.<br />

<strong>18</strong>4. B. Kuhn and P. A. Kollman, J. Med. Chem., 43, 3786 (2000). B<strong>in</strong>d<strong>in</strong>g of a Diverse Set<br />

of Ligands to Avid<strong>in</strong> and Streptavid<strong>in</strong>: An Accurate Quantitative Prediction of Their<br />

Relative Aff<strong>in</strong>ities by a Comb<strong>in</strong>ation of Molecular Mechanics and Cont<strong>in</strong>uum Solvent<br />

Models.<br />

<strong>18</strong>5. N. Froloff, A. W<strong>in</strong>demuth, and B. Honig, Prote<strong>in</strong> Sci., 6, 1293 (1997). On the Calculation of<br />

B<strong>in</strong>d<strong>in</strong>g Free Energies Us<strong>in</strong>g Cont<strong>in</strong>uum Methods: Application to MHC Class I Prote<strong>in</strong>–<br />

Peptide Interactions.<br />

<strong>18</strong>6. J. Shen, J. Med. Chem., 40, 2953 (1997). A Theoretical Investigation of Tight-B<strong>in</strong>d<strong>in</strong>g<br />

Thermolys<strong>in</strong> Inhibitors.<br />

<strong>18</strong>7. C. J. Woods, M. A. K<strong>in</strong>g, and J. W. Essex, J. Comput.-Aided Mol. Design, 15, 129 (2001). The<br />

Configurational Dependence of B<strong>in</strong>d<strong>in</strong>g Free Energies: A Poisson–Boltzmann Study of<br />

Neuram<strong>in</strong>idase Inhibitors.<br />

<strong>18</strong>8. G. Archontis, T. Simonson, and M. Karplus, J. Mol. Biol., 306, 307 (2001). B<strong>in</strong>d<strong>in</strong>g Free<br />

Energies and Free Energy Components from Molecular Dynamics and Poisson–Boltzmann<br />

Calculations. Application to Am<strong>in</strong>o Acid Recognition by Aspartyl–tRNA Synthetase.<br />

<strong>18</strong>9. A. R. Leach, J. Mol. Biol., 235, 345 (1994). Ligand Dock<strong>in</strong>g to Prote<strong>in</strong>s With Discrete Side-<br />

Cha<strong>in</strong> Flexibility.<br />

190. R. M. A. Knegtel, I. D. Kuntz, and C. M. Oshiro, J. Mol. Biol., 266, 424 (1997). Molecular<br />

Dock<strong>in</strong>g to Ensembles of Prote<strong>in</strong> Structures.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!