19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

136 Polarizability <strong>in</strong> Computer Simulations<br />

29. R. E. Kozack and P. C. Jordan, J. Chem. Phys., 96, 3120–3130 (1992). Polarizability Effects<br />

on a Four-Charge Model for Water.<br />

30. A. Wallqvist and B. J. Berne, J. Phys. Chem., 97, 13841–13851 (1993). Effective Potentials for<br />

Liquid Water Us<strong>in</strong>g Polarizable and Nonpolarizable Models.<br />

31. D. N. Bernardo, Y. D<strong>in</strong>g, K. Krogh-Jespersen, and R. M. Levy, J. Phys. Chem., 98, 4<strong>18</strong>0–4<strong>18</strong>7<br />

(1994). An Anisotropic Polarizable Water Model: Incorporation of All-Atom Polarizabilities<br />

<strong>in</strong>to Molecular Mechanics Force Fields.<br />

32. J. W. Caldwell and P. A. Kollman, J. Phys. Chem., 99, 6208–6219 (1995). Structure and<br />

Properties of Neat Liquids Us<strong>in</strong>g Nonadditive Molecular Dynamics: Water, Methanol, and<br />

N-Methylacetamide.<br />

33. J. Brodholt, M. Sampoli, and R. Vallauri, Mol. Phys., 85, 81–90 (1995). Parameteriz<strong>in</strong>g<br />

Polarizable Intermolecular Potentials for Water with the Ice 1h Phase.<br />

34. T. Chang, K. A. Peterson, and L. X. Dang, J. Chem. Phys., 103, 7502–7513 (1995). Molecular<br />

Dynamics Simulations of Liquid, Interface, and Ionic Solvation of Polarizable Carbon<br />

Tetrachloride.<br />

35. A. A. Chialvo and P. T. Cumm<strong>in</strong>gs, J. Chem. Phys., 105, 8274–8281 (1996). Eng<strong>in</strong>eer<strong>in</strong>g a<br />

Simple Polarizable Model for the Molecular Simulation of Water Applicable over Wide<br />

Ranges of State Conditions.<br />

36. L. X. Dang and T. Chang, J. Chem. Phys., 106, 8149–8159 (1997). Molecular Dynamics<br />

Study of Water Clusters, Liquid, and Liquid–Vapor Interface of Water with Many-Body<br />

Potentials.<br />

37. L. Ojamäe, I. Shavitt, and S. J. S<strong>in</strong>ger, J. Chem. Phys., 109, 5547–5564 (1998). Potential<br />

Models for Simulations of the Solvated Proton <strong>in</strong> Water.<br />

38. Y. D<strong>in</strong>g, D. N. Bernardo, K. Krogh-Jespersen, and R. M. Levy, J. Phys. Chem., 99, 11575–<br />

11583 (1995). Solvation Free Energies of Small Amides and Am<strong>in</strong>es from Molecular<br />

Dynamics/Free Energy Perturbation Simulations Us<strong>in</strong>g Pairwise Additive and Many-Body<br />

Polarizable Potentials.<br />

39. J. Applequist, J. R. Carl, and K.-K. Fung, J. Am. Chem. Soc., 94, 2952–2960 (1972). An Atom<br />

Dipole Interaction Model for Molecular Polarizability. Application to Polyatomic Molecules<br />

and Determ<strong>in</strong>ation of Atom Polarizabilities.<br />

40. J. Applequist, Acc. Chem. Res., 10, 79–85 (1977). An Atom Dipole Interaction Model for<br />

Molecular Optical Properties.<br />

41. B. T. Thole, Chem. Phys., 59, 341–350 (1981). Molecular Polarizabilities Calculated with a<br />

Modified Dipole Interaction.<br />

42. R. C. Weast, Ed., CRC Handbook of <strong>Chemistry</strong> and Physics, CRC Press, Boca Raton, FL, Vol.<br />

66, 1985.<br />

43. F. H. Still<strong>in</strong>ger, J. Chem. Phys., 71, 1647–1651 (1979). Dynamics and Ensemble Averages for<br />

the Polarization Models of Molecular Interactions.<br />

44. A. Warshel and M. Levitt, J. Mol. Biol., 103, 227–249 (1976). Theoretical Studies of Enzymic<br />

Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion <strong>in</strong> the<br />

Reaction of Lysozyme.<br />

45. S. T. Russell and A.Warshel, J. Mol. Biol., <strong>18</strong>5, 389–404 (1985). Calculations of Electrostatic<br />

Energies <strong>in</strong> Prote<strong>in</strong>s. The Energetics of Ionized Groups <strong>in</strong> Bov<strong>in</strong>e Pancreatic Tryps<strong>in</strong><br />

Inhibitor.<br />

46. D. Van Belle, I. Couplet, M. Prevost, and S. J. Wodak, J. Mol. Biol., 198, 721–735 (1987).<br />

Calculations of Electrostatic Properties <strong>in</strong> Prote<strong>in</strong>s. Analysis of Contributions from Induced<br />

Prote<strong>in</strong> Dipoles.<br />

47. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C.<br />

Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 117, 5179–5197<br />

(1995). A Second Generation Force Field for the Simulation of Prote<strong>in</strong>s, Nucleic Acids, and<br />

Organic Molecules.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!