19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

162 Charge-Transfer Reactions <strong>in</strong> Condensed Phases<br />

Eq. [33] accord<strong>in</strong>g to the assumption of the classical character of this collective<br />

mode. Depend<strong>in</strong>g on the form of the coupl<strong>in</strong>g of the electron donor–acceptor<br />

subsystem to the solvent field, one may consider l<strong>in</strong>ear or nonl<strong>in</strong>ear solvation<br />

models. The coupl<strong>in</strong>g term Ei P <strong>in</strong> Eq. [32] represents the l<strong>in</strong>ear coupl<strong>in</strong>g<br />

model (L model) that results <strong>in</strong> a widely used l<strong>in</strong>ear response approximation. 37<br />

Some general properties of the bil<strong>in</strong>ear coupl<strong>in</strong>g (Q model) are discussed<br />

below.<br />

Equations [32] and [33] represent the system Hamiltonian that can be<br />

used to build the CT free energy surfaces. Accord<strong>in</strong>g to the general scheme<br />

outl<strong>in</strong>ed above, the first step <strong>in</strong> this procedure is to take the average over<br />

the electronic degrees of freedom of the system. This implies <strong>in</strong>tegrat<strong>in</strong>g<br />

over the electronic polarization Pe and the fermionic populations a þ i ai. The<br />

trace Tr el can be taken exactly, result<strong>in</strong>g <strong>in</strong> two <strong>in</strong>stantaneous energies 38<br />

E ½PnŠ ¼ ~ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

1 Iav½PnŠ 2 ð ~ I½PnŠÞ 2 þ 4ðHeff q<br />

2<br />

ab ½PnŠÞ<br />

where ~ Iav ¼ð ~ Ia þ ~ I bÞ=2 and ~ I ¼ ~ Ib<br />

~ Ii½PnŠ ¼Ii Ei Pn<br />

~ Ia. For i ¼ a; b<br />

The effective ET matrix element has the form<br />

½35Š<br />

1<br />

2 Ei ð we Ei þE12 we E12Þ<br />

½36Š<br />

~H eff<br />

ab ½PnŠ ¼e Se=2<br />

½Hab Eab Pn Eav we EabŠ ½37Š<br />

with Eav ¼ðEa þE bÞ=2. The matrix element ~ H eff<br />

ab ½PnŠ depends on the solvent<br />

through two components: (1) <strong>in</strong>teraction of the off-diagonal solute electric<br />

field with the nuclear solvent polarization (second term) and (2) solvation of<br />

the off-diagonal field by the electronic polarization of the solvent (third term).<br />

The former component leads to solvent-<strong>in</strong>duced fluctuations of the ET matrix<br />

element, which represent a non-Condon effect 39 of the dependence of electron<br />

coupl<strong>in</strong>g on nuclear degrees of freedom of the system. This effect is commonly<br />

neglected <strong>in</strong> the Condon approximation employed <strong>in</strong> treat<strong>in</strong>g nonadiabatic ET<br />

rates. 11<br />

Equation [37] is derived with<strong>in</strong> the assumption that both the electronic<br />

polarization and the donor–acceptor complex are characterized by quantum<br />

excitation frequencies, 38 bhoe 1, b E12 1, where E12 ¼ E2 E1 is<br />

the gas-phase adiabatic energy gap <strong>in</strong> Eq. [29]. The derivation does not assume<br />

any particular separation of these two characteristic time scales. The traditional<br />

formulation 27 assumes E12 hoe that elim<strong>in</strong>ates the electronic<br />

Franck–Condon factor expð Se=2Þ <strong>in</strong> Eq. [37]. The parameter 38,40<br />

Se ¼ E ab w e E ab=2hoe E ab ¼E b Ea ½38Š

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!