19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

86 The Use of Scor<strong>in</strong>g Functions <strong>in</strong> Drug Discovery Applications<br />

191. C. McMart<strong>in</strong> and R. S. Bohacek, J. Comput.-Aided Mol. Design, 11, 333 (1997). QXP:<br />

Powerful, Rapid Computer Algorithms for Structure-Based Drug Design.<br />

192. J. Apostolakis, A. Plückthun, and A. Caflisch, J. Comput. Chem., 19, 21 (1998). Dock<strong>in</strong>g<br />

Small Ligands <strong>in</strong> Flexible B<strong>in</strong>d<strong>in</strong>g Sites.<br />

193. V. Schnecke, C. A. Swanson, E. D. Getzoff, J. A. Ta<strong>in</strong>er, and L. A. Kuhn, Prote<strong>in</strong>s: Struct.,<br />

Funct., Genet., 33, 74 (1998). Screen<strong>in</strong>g a Peptidyl Database for Potential Ligands to<br />

Prote<strong>in</strong>s With Side-Cha<strong>in</strong> Flexibility.<br />

194. I. Kolossváry, and W. C. Guida, J. Comput. Chem., 20, 1671 (1999). Low-Mode Conformational<br />

Search Elucidated: Application to C39H80 and Flexible Dock<strong>in</strong>g of 9-Deazaguan<strong>in</strong>e<br />

Inhibitors to PNP.<br />

195. H. B. Broughton, J. Mol. Graphics Modell., <strong>18</strong>, 247 (2000). A Method for Includ<strong>in</strong>g Prote<strong>in</strong><br />

Flexibility <strong>in</strong> Prote<strong>in</strong>–Ligand Dock<strong>in</strong>g: Improv<strong>in</strong>g Tools for Database M<strong>in</strong><strong>in</strong>g and Virtual<br />

Screen<strong>in</strong>g.<br />

196. H. Claussen, C. Bun<strong>in</strong>g, M. Rarey, and T. Lengauer, J. Mol. Biol., 308, 377 (2001). FlexE:<br />

Efficient Molecular Dock<strong>in</strong>g Consider<strong>in</strong>g Prote<strong>in</strong> Structure Variations.<br />

197. M. D. Miller, R. P. Sheridan, S. K. Kearsley, and D. J. Underwood, <strong>in</strong> Methods <strong>in</strong> Enzymology,<br />

L. C. Kuo and J. A. Shafer, Eds., Academic Press, San Diego, 1994, Vol. 241, pp. 354–370.<br />

Advances <strong>in</strong> Automated Dock<strong>in</strong>g Applied to Human Immunodeficiency Virus Type 1 Protease.<br />

198. P. S. Charifson, J. J. Corkery, M. A. Murcko, and W. P. Walters, J. Med. Chem., 42, 5100<br />

(1999). Consensus Scor<strong>in</strong>g: A Method for Obta<strong>in</strong><strong>in</strong>g Improved Hit Rates from Dock<strong>in</strong>g<br />

Databases of Three-Dimensional Structures <strong>in</strong>to Prote<strong>in</strong>s.<br />

199. C. A. Baxter, C. W. Murray, D. E. Clark, D. R. Westhead, and M. D. Eldridge, Prote<strong>in</strong>s:<br />

Struct., Funct., Genet., 33, 367 (1998). Flexible Dock<strong>in</strong>g Us<strong>in</strong>g Tabu Search and an<br />

Empirical Estimate of B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ity.<br />

200. WDI: World Drug Index, 1996, Derwent Information. http://www.derwent.com.<br />

201. Protherics PLC, Runcorn, Cheshire, UK. The data set was formerly available at http://www.<br />

protherics.com/crunch/.<br />

202. S. B. Shuker, P. J. Hajduk, R. P. Meadows, and S. W. Fesik, Science, 274, 1531 (1996).<br />

Discover<strong>in</strong>g High-Aff<strong>in</strong>ity Ligands for Prote<strong>in</strong>s: SAR by NMR.<br />

203. N. Tomioka and A. Itai, J. Comput.-Aided Mol. Design, 8, 347 (1994). GREEN: A Program<br />

Package for Dock<strong>in</strong>g Studies <strong>in</strong> Rational Drug Design.<br />

204. T. Toyoda, R. K. B. Brobey, G.-I. Sano, T. Horii, N. Tomioka, and A. Itai, Biochem. Biophys.<br />

Res. Commun., 235, 515 (1997). Lead Discovery of Inhibitors of the Dihydrofolate<br />

Reductase Doma<strong>in</strong> of Plasmodium falciparum Dihydrofolate Reductase–Thymidylate<br />

Synthase.<br />

205. P. Burkhard, P. Taylor, and M. D. Walk<strong>in</strong>shaw, J. Mol. Biol., 277, 449 (1998). An Example of<br />

a Prote<strong>in</strong> Ligand Found by Database M<strong>in</strong><strong>in</strong>g: Description of the Dock<strong>in</strong>g Method and Its<br />

Verification by a 2.3 A˚ X-Ray Structure of a Thromb<strong>in</strong>–Ligand Complex.<br />

206. R. Abagyan, M. Trotov, and D. Kuznetsov, J. Comput. Chem., 15, 488 (1994). ICM—A New<br />

Method for Prote<strong>in</strong> Model<strong>in</strong>g and Design: Applications to Dock<strong>in</strong>g and Structure Prediction<br />

from the Distorted Native Conformation.<br />

207. M. Schapira, B. M. Raaka, H. H. Samuels, and R. Abagyan, Proc. Natl. Acad. Sci. U.S.A., 97,<br />

1008 (2000). Rational Discovery of Novel Nuclear Hormone Receptor Antagonists.<br />

208. A. V. Filikov, V. Monan, T. A. Vickers, R. H. Griffey, P. D. Cook, R. A. Abagyan, and<br />

T. L. James, J. Comput.-Aided Mol. Design, 14, 593 (2000). Identification of Ligands for<br />

RNA Targets via Structure-Based Virtual Screen<strong>in</strong>g: HIV-1 TAR.<br />

209. Available Chemicals Directory, MDL Information Systems, Inc., San Leandro, CA, USA.<br />

http://www.mdl.com.<br />

210. D. W. Christianson and C. A. Fierke, Acc. Chem. Res., 29, 331 (1996). Carbonic Anhydrase:<br />

Evolution of the Z<strong>in</strong>c-B<strong>in</strong>d<strong>in</strong>g Site by Nature and by Design.<br />

211. Maybridge Database, Maybridge Chemical Co. Ltd., UK, 1999. http://www.maybridge.com<br />

and http://www.daylight.com.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!