19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

References 145<br />

216. M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys., 112, 8910–8922 (2000). A Five-Site<br />

Model for Liquid Water and the Reproduction of the Density Anomaly by Rigid, Nonpolarizable<br />

Potential Functions.<br />

217. M. Sprik, M. L. Kle<strong>in</strong>, and K. Watanabe, J. Phys. Chem., 94, 6483–6488 (1990). Solvent<br />

Polarization and Hydration of the Chlor<strong>in</strong>e Anion.<br />

2<strong>18</strong>. L. Perera and M. L. Berkowitz, J. Chem. Phys., 100, 3085–3093 (1994). Structures<br />

of Cl ðH2OÞn and F ðH2OÞn ðn ¼ 2; 3; ...; 15Þ Clusters. Molecular Dynamics Computer<br />

Simulations.<br />

219. P. Jungwirth and D. J. Tobias, J. Phys. Chem. B, 104, 7702–7706 (2000). Surface Effects on<br />

Aqueous Ionic Solvation: A Molecular Dynamics Study of NaCl at the Air/Water Interface<br />

from Inf<strong>in</strong>ite Dilution to Saturation.<br />

220. I.-C. Yeh and M. L. Berkowitz, J. Chem. Phys., 112, 10491–10495 (2000). Effects of the<br />

Polarizability and Water Density Constra<strong>in</strong>t on the Structure of Water Near Charged<br />

Surfaces: Molecular Dynamics Simulations.<br />

221. G. Gilli, F. Belluci, V. Ferretti, and V. Berolasi, J. Am. Chem. Soc., 111, 1023–1128 (1989).<br />

Evidence for Resonance-Assisted Hydrogen Bond<strong>in</strong>g from Crystal Structure Correlations on<br />

the Enol Form of the b-Diketone Fragment.<br />

222. G. A. Jeffrey and W. Saenger, Hydrogen Bond<strong>in</strong>g <strong>in</strong> Biological Structures, Spr<strong>in</strong>ger-Verlag,<br />

Heidelberg, 1991.<br />

223. H. Guo and M. Karplus, J. Phys. Chem., 98, 7104–7105 (1994). Solvent Influence on the<br />

Stability of the Peptide Hydrogen Bond: A Supramolecular Cooperative Effect.<br />

224. R. Ludwig, F. We<strong>in</strong>hold, and T. C. Farrar, J. Chem. Phys., 107, 499–507 (1997). Theoretical<br />

Study of Hydrogen Bond<strong>in</strong>g <strong>in</strong> Liquid and Gaseous N-Methylformamide.<br />

225. H. Guo, N. Gresh, B. P. Rogues, and D. R. Salahub, J. Phys. Chem. B, 104, 9746–9754<br />

(2000). Many-Body Effects <strong>in</strong> Systems of Peptide Hydrogen- Bonded Networks and Their<br />

Contributions to Ligand B<strong>in</strong>d<strong>in</strong>g: A Comparison of DFT and Polarizable Molecular<br />

Mechanics.<br />

226. I. M. Klotz and J. S. Franzen, J. Am. Chem. Soc., 84, 3461–3466 (1962). Hydrogen Bonds<br />

Between Model Peptide Groups <strong>in</strong> Solution.<br />

227. A. Wada, Adv. Biophys., 9, 1–63 (1976). The a-Helix as an Electric MacroDipole.<br />

228. A. van der Vaart, B. D. Bursulaya, C. L. Brooks III, and K. M. Merz Jr., J. Phys. Chem. B, 104,<br />

9554–9563 (2000). Are Many-Body Effects Important <strong>in</strong> Prote<strong>in</strong> Fold<strong>in</strong>g?<br />

229. H. Guo and D. R. Salahub, Angew. Chem. Int. Ed., 37, 2985–2990 (1998). Cooperative<br />

Hydrogen Bond<strong>in</strong>g and Enzyme Catalysis.<br />

230. J. S˘poner, H. A. Gabb, J. Leszczynski, and P. Hobza, Biophys. J., 73, 76–87 (1997). Base-Base<br />

and Deoxyribose-Base Stack<strong>in</strong>g Interactions <strong>in</strong> B-DNA and Z-DNA: A Quantum-Chemical<br />

Study.<br />

231. N. Gresh and J. S˘poner, J. Phys. Chem. B, 103, 11415–11427 (1999). Complexes of Pentahydrated<br />

Zn 2 þ with Guan<strong>in</strong>e, Aden<strong>in</strong>e, and the Guan<strong>in</strong>e–Cytos<strong>in</strong>e and Aden<strong>in</strong>e–Thym<strong>in</strong>e<br />

Base Pairs. Structures and Energies Characterized by Polarizable Molecular Mechanics and<br />

Ab Initio Calculations.<br />

232. P. Cieplak, J. Caldwell, and P. Kollman, J. Comput. Chem., 22, 1048–1057 (2001). Molecular<br />

Mechanical Models for Organic and Biological Systems Go<strong>in</strong>g Beyond the Atom Centered<br />

Two Body Additive Approximation: Aqueous Solution Free Energies of Methanol and<br />

N-Methyl Acetamide, Nucleic Acid Base, and Amide Hydrogen Hydrogen Bond<strong>in</strong>g<br />

and Chloroform/Water Partition Coefficients of the Nucleic Acid Bases.<br />

233. E. D. Stevens, Acta Crystallogr., Sect. B, 34, 544–551 (1978). Low Temperature Experimental<br />

Electron Density Distribution <strong>in</strong> Formamide.<br />

234. G. A. Jeffrey, An Introduction to Hydrogen Bond<strong>in</strong>g, Oxford University Press, New York and<br />

Oxford, 1997.<br />

235. M. W. MacArthur and J. M. Thornton, J. Mol. Biol., 264, 1<strong>18</strong>0–1195 (1996). Deviations<br />

from Planarity of the Peptide Bond <strong>in</strong> Peptides and Prote<strong>in</strong>s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!