19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

138 Polarizability <strong>in</strong> Computer Simulations<br />

70. M. Born and T. von Kármán, Phys. Z., 13, 297–309 (1912). Vibrations <strong>in</strong> Space Grat<strong>in</strong>gs<br />

(Molecular Frequencies).<br />

71. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press,<br />

Oxford, UK, 1954.<br />

72. B. G. Dick and A. W. Overhauser, Phys. Rev., 112, 90 (1958). Theory of the Dielectric<br />

Constants of Alkali Halide Crystals.<br />

73. J. E. Hanlon and A. W. Lawson, Phys. Rev., 113, 472–478 (1959). Effective Ionic Charge <strong>in</strong><br />

Alkali Halides.<br />

74. R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B. Woods, Phys. Rev., 131, 1030–<br />

1039 (1963). Lattice Dynamics of Alkali Halide Crystals. III. Theoretical.<br />

75. W. Cochran, CRC Crit. Rev. Solid State Sci., 2, 1–44 (1971). Lattice Dynamics of Ionic and<br />

Covalent Crystals.<br />

76. A. N. Basu, D. Roy, and S. Sengupta, Phys. Stat. Sol. A, 23, 11–32 (1974). Polarisable Models<br />

for Ionic Crystals and the Effective Many-Body Interaction.<br />

77. M. J. L. Sangster and M. Dixon, Adv. Phys., 25, 247–342 (1976). Interionic Potentials <strong>in</strong><br />

Alkali Halides and Their Use <strong>in</strong> Simulations of the Molten Salts.<br />

78. J. Shanker and S. Dixit, Phys. Status Solidi A, 123, 17–50 (1991). Dielectric Constants and<br />

Their Pressure and Temperature Derivatives for Ionic Crystals.<br />

79. P. Drude, The Theory of Optics, Longmans, Green, and Co., New York, 1901.<br />

80. F. London, Trans. Faraday Soc., 33, 8–26 (1937). The General Theory of Molecular Forces.<br />

81. W. Cochran, <strong>in</strong> Phonons <strong>in</strong> Perfect Lattices and <strong>in</strong> Lattices with Po<strong>in</strong>t Imperfections, R. W. H.<br />

Stevenson, Ed., Plenum Press, New York, 1966, Vol. 6 of Scottish Universities’ Summer<br />

School, Chapter 2, pp. 53–72. Theory of Phonon Dispersion Curves.<br />

82. S. J. Stuart and B. J. Berne, J. Phys. Chem., 100, 11934–11943 (1996). Effects of Polarizability<br />

on the Hydration of the Chloride Ion.<br />

83. C. R. A. Catlow, K. M. Diler, and M. J. Norgett, J. Phys. C, 10, 1395–1412 (1977). Interionic<br />

Potentials for Alkali Halides.<br />

84. M. Dixon and M. J. Gillan, Philos. Mag. B, 43, 1099–1112 (1981). Structure of Molten Alkali<br />

Chlorides I. A Molecular Dynamics Study.<br />

85. G. V. Lewis and C. R. A. Catlow, J. Phys. C., <strong>18</strong>, 1149–1161 (1985). Potential Models for<br />

Ionic Oxides.<br />

86. A. M. Stoneham and J. H. Hard<strong>in</strong>g, Annu. Rev. Phys. Chem., 37, 53 (1986). Interatomic<br />

Potentials <strong>in</strong> Solid State <strong>Chemistry</strong>.<br />

87. C. R. A. Catlow and G. D. Price, Nature (London), 347, 243–248 (1990). Computer<br />

Modell<strong>in</strong>g of Solid-State Inorganic Materials.<br />

88. J. H. Hard<strong>in</strong>g, Rep. Progr. Phys., 53, 1403–1466 (1990). Computer Simulation of Defects <strong>in</strong><br />

Ionic Solids.<br />

89. S. M. Toml<strong>in</strong>son, C. R. A. Catlow, and J. H. Hard<strong>in</strong>g, J. Phys. Chem. Solids, 51, 477–506<br />

(1990). Computer Modell<strong>in</strong>g of the Defect Structure of Non-Stoichiometric B<strong>in</strong>ary Transition<br />

Metal Oxides.<br />

90. P. J. Mitchell and D. F<strong>in</strong>cham, J. Phys.: Condens. Matter, 5, 1031–1038 (1993). Shell Model<br />

Simulations by Adiabatic Dynamics.<br />

91. P. J. D. L<strong>in</strong>dan, Mol. Simul., 14, 303–312 (1995). Dynamics with the Shell Model.<br />

92. M. S. Islam, J. Mater. Chem., 10, 1027–1038 (2000). Ionic Transport <strong>in</strong> ABO(3) Perovskite<br />

Oxides: A Computer Modell<strong>in</strong>g Tour.<br />

93. J.-R. Hill, A. R. M<strong>in</strong>ihan, E. Wimmer, and C. J. Adams, Phys. Chem. Chem. Phys., 2, 4255–<br />

4264 (2000). Framework Dynamics Includ<strong>in</strong>g Computer Simulations of the Water Adsorption<br />

Isotherm of Zeolite Na-MAP. See also J.-R. Hill, C. M. Freeman, and L. Subramanian,<br />

<strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH,<br />

New York, 2000, Vol. 16, pp. 141–216. Use of Force Fields <strong>in</strong> Materials Model<strong>in</strong>g. The shell<br />

model is also discussed by B. van de Graaf, S. L. Njo, and K. S. Smirnov, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!