19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

References 141<br />

139. J. H<strong>in</strong>ze and H. H. Jaffe, J. Am. Chem. Soc., 84, 540–546 (1962). Electronegativity. I. Orbital<br />

Electronegativity of Neutral Atoms.<br />

140. U. D<strong>in</strong>ur, J. Mol. Struct. (THEOCHEM), 303, 227–237 (1994). A Relationship Between the<br />

Molecular Polarizability, Molecular Dipole Moment and Atomic Electronegativities <strong>in</strong> AB<br />

and ABn Molecules.<br />

141. In Ref. 125, the hardness, J, and Jab (rab) are both characterized by a Slater exponent<br />

parameter, . For hydrogen atoms, this parameter is taken to depend on its charge<br />

( ¼ 0 þ qH), <strong>in</strong>troduc<strong>in</strong>g nonl<strong>in</strong>earities <strong>in</strong> the electronegativities. However, rather than<br />

us<strong>in</strong>g the Mulliken def<strong>in</strong>ition of w as @U<br />

@q ; Rappé and Goddard use the expression for w from<br />

Eq. [42] and thereby ignore the nonl<strong>in</strong>ear terms. This means that the charges <strong>in</strong> this model do<br />

not m<strong>in</strong>imize the energy. This fact is not clear from Ref. 125, but it is necessary to use Eq. [42]<br />

to reproduce their results.<br />

142. H. Toufar, B. G. Baekelandt, G. O. A. Janssens, W. J. Mortier, and R. A. Schoonheydt,<br />

J. Phys. Chem., 99, 13876–13885 (1995). Investigation of Supramolecular Systems by a<br />

Comb<strong>in</strong>ation of the Electronegativity Equalization Method and a Monte Carlo Simulation<br />

Technique.<br />

143. B.-C. Perng, M. D. Newton, F. O. Ra<strong>in</strong>eri, and H. L. Friedman, J. Chem. Phys., 104, 7153–<br />

7176 (1996). Energetics of Charge Transfer Reactions <strong>in</strong> Solvents of Dipolar and Higher<br />

Order Multiplier Character. I. Theory.<br />

144. M. J. Field, Mol. Phys., 91, 835–845 (1997). Hybrid Quantum Mechanical/Molecular<br />

Mechanical Fluctuat<strong>in</strong>g Charge Models for Condensed Phase Simulations.<br />

145. Y.-P. Liu, K. Kim, B. J. Berne, R. A. Friesner, and S. W. Rick, J. Chem. Phys., 108, 4739<br />

(1998). Construct<strong>in</strong>g Ab Initio Force Fields for Molecular Dynamics Simulations.<br />

146. J. L. Banks, G. A. Kam<strong>in</strong>ski, R. Zhou, D. T. Ma<strong>in</strong>z, B. J. Berne, and R. A. Friesner, J. Chem.<br />

Phys., 110, 741–754 (1999). Parametriz<strong>in</strong>g a Polarizable Force Field from Ab Initio Data. I.<br />

The Fluctuat<strong>in</strong>g Po<strong>in</strong>t Charge Model.<br />

147. B. Chen, J. X<strong>in</strong>g, and J. I. Siepmann, J. Phys. Chem. B, 104, 2391–2401 (2000). Development<br />

of Polarizable Water Force Fields for Phase Equilibria Calculations.<br />

148. M. C. C. Ribeiro and L. C. J. Almeida, J. Chem. Phys., 110, 11445–11448 (1999). Fluctuat<strong>in</strong>g<br />

Charge Model for Polyatomic Ionic Systems: A Test Case with Diatomic Anions.<br />

149. R. Chelli, P. Procacci, R. Righ<strong>in</strong>i, and S. Califano, J. Chem. Phys., 111, 8569–8575 (1999).<br />

Electrical Response <strong>in</strong> Chemical Potential Equilization Schemes.<br />

150. H. A. Stern, G. A. Kam<strong>in</strong>ski, J. L. Banks, R. Zhou, B. J. Berne, and R. A. Friesner, J. Phys.<br />

Chem. B, 103, 4730–4737 (1999). Fluctuat<strong>in</strong>g Charge, Polarizable Dipole, and Comb<strong>in</strong>ed<br />

Models: Parameterization from Ab Initio Quantum <strong>Chemistry</strong>.<br />

151. K. Kitaura and K. Morokuma, Int. J. Quantum Chem., 10, 325–340 (1976). A New Energy<br />

Decomposition Scheme for Molecular Interactions with<strong>in</strong> the Hartee–Fock Approximation.<br />

152. F. We<strong>in</strong>hold, J. Mol. Struct., 399, <strong>18</strong>1–197 (1997). Nature of H-Bond<strong>in</strong>g <strong>in</strong> Clusters, Liquids,<br />

and Enzymes: An Ab Initio, Natural Bond Orbital Perspective.<br />

153. A. van der Vaart and K. M. Merz Jr., J. Am. Chem. Soc., 121, 9<strong>18</strong>2–9190 (1999). The Role of<br />

Polarization and Charge Transfer <strong>in</strong> the Solvation of Biomolecules.<br />

154. J. Korchowiec and T. Uchimaru, J. Chem. Phys., 112, 1623–1633 (2000). New Energy<br />

Partition<strong>in</strong>g Scheme Based on the Self-Consistent Charge and Configuration Method for<br />

Subsystems: Application to Water Dimer System.<br />

155. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr., Phys. Rev. Lett., 49, 1691–1694 (1982).<br />

Density-Functional Theory for Fractional Particle Number: Derivative Discont<strong>in</strong>uities of the<br />

Energy.<br />

156. R. Car and M. Parr<strong>in</strong>ello, Phys. Rev. Lett., 55, 2471–2474 (1985). Unified Approuch for<br />

Molecular Dynamics and Density-Functional Theory.<br />

157. J. Morales and T. J. Mart<strong>in</strong>ez, J. Chem. Phys., 105, 2842–2850 (2001). Classical Fluctuat<strong>in</strong>g<br />

Charge Theories: An Entropy Valence Bond Formalism and Relationships to Previous<br />

Models.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!