19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80 The Use of Scor<strong>in</strong>g Functions <strong>in</strong> Drug Discovery Applications<br />

69. A. N. Ja<strong>in</strong>, J. Comput.-Aided Mol. Design, 10, 427 (1996). Scor<strong>in</strong>g Non-Covalent Prote<strong>in</strong><br />

Ligand Interactions: A Cont<strong>in</strong>uous Differentiable Function Tuned to Compute B<strong>in</strong>d<strong>in</strong>g<br />

Aff<strong>in</strong>ities.<br />

70. W. Welch, J. Ruppert, and A. N. Ja<strong>in</strong>, Chem. Biol., 3, 449 (1996). Hammerhead: Fast, Fully<br />

Automated Dock<strong>in</strong>g of Flexible Ligands to Prote<strong>in</strong> B<strong>in</strong>d<strong>in</strong>g Sites.<br />

71. M. D. Elridge, C. W. Murray, T. R. Auton, G. V. Paol<strong>in</strong>i, and R. P. Mee, J. Comput.-Aided<br />

Mol. Design, 11, 425 (1997). Empirical Scor<strong>in</strong>g Functions. I. The Development of a Fast<br />

Empirical Scor<strong>in</strong>g Function to Estimate the B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ity of Ligands <strong>in</strong> Receptor Complexes.<br />

72. C. W. Murray, T. R. Auton, and M. D. Elridge, J. Comput.-Aided Mol. Design, 12, 503<br />

(1999). Empirical Scor<strong>in</strong>g Functions. II. The Test<strong>in</strong>g of an Empirical Scor<strong>in</strong>g Function for the<br />

Prediction of Ligand-Receptor B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ities and the Use of Bayesian Regression to<br />

Improve the Quality of the Method.<br />

73. H.-J. Boehm, J. Comput.-Aided Mol. Design, 12, 309 (1998). Prediction of B<strong>in</strong>d<strong>in</strong>g Constants<br />

of Prote<strong>in</strong> Ligands: A Fast Method for the Prioritization of Hits Obta<strong>in</strong>ed From De Novo<br />

Design or 3D Database Search Programs.<br />

74. Y. Takamatsu and A. Itai, Prote<strong>in</strong>s: Struct., Funct., Genet., 33, 62 (1998). A New Method for<br />

Predict<strong>in</strong>g B<strong>in</strong>d<strong>in</strong>g Free Energy Between Receptor and Ligand.<br />

75. R. Wang, L. Liu, L. Lai, and Y. Tang, J. Mol. Model., 4, 379 (1998). SCORE: A New<br />

Empirical Method for Estimat<strong>in</strong>g the B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ity of a Prote<strong>in</strong>–Ligand Complex.<br />

76. D. Rognan, S. L. Lauemoller, A. Holm, S. Buus, and V. Tsch<strong>in</strong>ke, J. Med. Chem., 42, 4650<br />

(1999). Predict<strong>in</strong>g B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ities of Prote<strong>in</strong> Ligands from Three-Dimensional Models:<br />

Application to Peptide B<strong>in</strong>d<strong>in</strong>g to Class I Major Histocompatibility Prote<strong>in</strong>s.<br />

77. C. Bissantz, G. Folkers, and D. Rognan, J. Med. Chem., 43, 4759 (2000). Prote<strong>in</strong>-Based<br />

Virtual Screen<strong>in</strong>g of Chemical Databases. 1. Evaluation of Different Dock<strong>in</strong>g/Scor<strong>in</strong>g<br />

Comb<strong>in</strong>ations.<br />

78. M. Stahl and M. Rarey, J. Med. Chem., 44, 1035 (2001). Detailed Analysis of Scor<strong>in</strong>g<br />

Functions for Virtual Screen<strong>in</strong>g.<br />

79. G. E. Kellogg, G. S. Joshi, and D. J. Abraham, Med. Chem. Res., 1, 444 (1991). New Tools for<br />

Model<strong>in</strong>g and Understand<strong>in</strong>g Hydrophobicity and Hydrophobic Interactions.<br />

80. E. C. Meng, I. D. Kuntz, D. J. Abraham, and G. E. Kellogg, J. Comput.-Aided Mol. Design, 8,<br />

299 (1994). Evaluat<strong>in</strong>g Docked Complexes With the HINT Exponential Function and<br />

Empirical Atomic Hydrophobicities.<br />

81. C. Zhang, G. Vasmatzis, J. L. Cornette, and C. DeLisi, J. Mol. Biol., 267, 707 (1997).<br />

Determ<strong>in</strong>ation of Atomic Solvation Energies from the Structure of Crystallized Prote<strong>in</strong>s.<br />

82. R. S. DeWitte and E. I. Shakhnovich, J. Am. Chem. Soc., 1<strong>18</strong>, 11733 (1996). SMoG: De Novo<br />

Design Method Based on Simple, Fast and Accurate Free Energy Estimates. 1. Methodology<br />

and Support<strong>in</strong>g Evidence.<br />

83. R. S. DeWitte, A. V. Ishchenko, and E. I. Shakhnovich, J. Am. Chem. Soc., 119, 4608 (1997).<br />

SMoG: De Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates.<br />

2. Case Studies <strong>in</strong> Molecular Design.<br />

84. J. B. O. Mitchell, R. A. Laskowski, A. Alex, and J. M. Thornton, J. Comput. Chem., 20, 1165<br />

(1999). BLEEP—A Potential of Mean Force Describ<strong>in</strong>g Prote<strong>in</strong>–Ligand Interactions. I.<br />

Generat<strong>in</strong>g the Potential.<br />

85. J. B. O. Mitchell, R. A. Laskowski, A. Alex, M. J. Forster, and J. M. Thornton, J. Comput.<br />

Chem., 20, 1177 (1999). BLEEP—A Potential of Mean Force Describ<strong>in</strong>g Prote<strong>in</strong>–Ligand<br />

Interactions. II. Calculation of B<strong>in</strong>d<strong>in</strong>g Energies and Comparison With Experimental<br />

Data.<br />

86. I. Muegge and Y. C. Mart<strong>in</strong>, J. Med. Chem., 42, 791 (1999). A General and Fast Scor<strong>in</strong>g<br />

Function for Prote<strong>in</strong>–Ligand Interactions: A Simplified Potential Approach.<br />

87. I. Muegge, Y. C. Mart<strong>in</strong>, P. J. Hajduk, and S. W. Fesik, J. Med. Chem., 42, 2498 (1999).<br />

Evaluation of PMF Scor<strong>in</strong>g <strong>in</strong> Dock<strong>in</strong>g Weak Ligands to the FK506 B<strong>in</strong>d<strong>in</strong>g Prote<strong>in</strong>.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!