19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

82 The Use of Scor<strong>in</strong>g Functions <strong>in</strong> Drug Discovery Applications<br />

111. I. D. Wall, A. R. Leach, D. W. Salt, M. G. Ford, and J. W. Essex, J. Med. Chem., 42, 5142<br />

(1999). B<strong>in</strong>d<strong>in</strong>g Constants of Neuram<strong>in</strong>idase Inhibitors: An Investigation of the L<strong>in</strong>ear<br />

Interaction Energy Method.<br />

112. R. C. Rizzo, J. Tirado-Rives, and W. L. Jorgensen, J. Med. Chem., 44, 145 (2001). Estimation<br />

of B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ities for HEPT and Nevirap<strong>in</strong>e Analogues With HIV-1 Reverse Transcriptase<br />

via Monte Carlo Simulations.<br />

113. D. A. Pearlman, J. Med. Chem., 42, 4313 (1999). Free Energy Grids: A Practical Qualitative<br />

Application of Free Energy Perturbation to Ligand Design Us<strong>in</strong>g the OWFEG Method.<br />

114. D. A. Pearlman and P. A. Charifson, J. Med. Chem., 44, 502 (2001). Improved Scor<strong>in</strong>g of<br />

Ligand–Prote<strong>in</strong> Interactions Us<strong>in</strong>g OWFEG Free Energy Grids.<br />

115. D. N. A. Boobbyer, P. J. Goodford, P. M. McWh<strong>in</strong>nie, and R. C. Wade, J. Med. Chem., 32,<br />

1083 (1989). New Hydrogen-Bond Potentials for Use <strong>in</strong> Determ<strong>in</strong><strong>in</strong>g Energetically Favorable<br />

B<strong>in</strong>d<strong>in</strong>g Sites on Molecules of Known Structure.<br />

116. R. C. Wade, K. J. Clark, and P. J. Goodford, J. Med. Chem., 36, 140 (1993). Further<br />

Development of Hydrogen-Bond Functions for Use <strong>in</strong> Determ<strong>in</strong><strong>in</strong>g Energetically Favorable<br />

B<strong>in</strong>d<strong>in</strong>g Sites on Molecules of Known Structure. 1. Ligand Probe Groups With the Ability to<br />

Form Two Hydrogen Bonds.<br />

117. R. C. Wade and P. J. Goodford, J. Med. Chem., 36, 148 (1993). Further Development of<br />

Hydrogen Bond Functions for Use <strong>in</strong> Determ<strong>in</strong><strong>in</strong>g Energetically Favorable B<strong>in</strong>d<strong>in</strong>g Sites on<br />

Molecules of Known Structure. 2. Ligand Probe Groups With the Ability to Form More Than<br />

Two Hydrogen Bonds.<br />

1<strong>18</strong>. M. K. Gilson, J. A. Given, B. L. Bush, and J. A. McCammon, Biophys. J., 72, 1047 (1997). The<br />

Statistical-Thermodynamic Basis for Computation of B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ities: A Critical Review.<br />

119. T. P. Straatsma, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and D. B. Boyd,<br />

Eds., VCH Publishers, New York, 1991, Vol. 9, pp. 81–127. Free Energy by Molecular<br />

Simulation.<br />

120. P. A. Kollman, Acc. Chem. Res., 29, 461 (1996). Advances and Cont<strong>in</strong>u<strong>in</strong>g Challenges <strong>in</strong><br />

Achiev<strong>in</strong>g Realistic and Predictive Simulations of the Properties of Organic and Biological<br />

Molecules.<br />

121. M. L. Lamb and W. L. Jorgensen, Curr. Op<strong>in</strong>. Chem. Biol., 1, 449 (1997). <strong>Computational</strong><br />

Approaches to Molecular Recognition.<br />

122. M. R. Reddy, M. D. Erion, and A. Agarwal, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>,<br />

K. B. Lipkowitz and D. B. Boyd, Eds., Wiley-VCH, New York, 2000, Vol. 16, pp. 217–<br />

304. Free Energy Calculations: Use and Limitations <strong>in</strong> Predict<strong>in</strong>g Ligand B<strong>in</strong>d<strong>in</strong>g<br />

Aff<strong>in</strong>ities.<br />

123. M. K. Gilson, J. A. Given, and M. S. Head, Chem. Biol., 4, 87 (1997). A New Class of Models<br />

for Comput<strong>in</strong>g Receptor–Ligand B<strong>in</strong>d<strong>in</strong>g Aff<strong>in</strong>ities.<br />

124. A. E. Mark and W. F. van Gunsteren, J. Mol. Biol., 240, 167 (1994). Decomposition of the<br />

Free Energy of a System <strong>in</strong> Terms of Specific Interactions.<br />

125. D. Williams and B. Bardsley, Perspect. Drug Discovery Design, 17, 43 (1999). Estimat<strong>in</strong>g<br />

B<strong>in</strong>d<strong>in</strong>g Constants—The Hydrophobic Effect and Cooperativity.<br />

126. P. R. Andrews, D. J. Craik, and J. L. Mart<strong>in</strong>, J. Med. Chem., 27, 1648 (1984). Functional<br />

Group Contributions to Drug–Receptor Interactions.<br />

127. H.-J. Schneider, Chem. Soc. Rev., 227 (1994). L<strong>in</strong>ear Free Energy Relationships and Pairwise<br />

Interactions <strong>in</strong> Supramolecular <strong>Chemistry</strong>.<br />

128. T. J. Stout, C. R. Sage, and R. M. Stroud, Structure, 6, 839 (1998). The Additivity of Substrate<br />

Fragments <strong>in</strong> Enzyme–Ligand B<strong>in</strong>d<strong>in</strong>g.<br />

129. M. K. Holloway, J. M. Wai, T. A. Halgren, P. M. D. Fitzgerald, J. P. Vacca, B. D. Dorsey,<br />

R. B. Lev<strong>in</strong>, W. J. Thompson, L. J. Chen, S. J. deSolms, N. Gaff<strong>in</strong>, T. A. Lyle, W. A. Sanders,<br />

T. J. Tucker, M. Wigg<strong>in</strong>s, C. M. Wiscount, O. W. Woltersdorf, S. D. Young, P. L. Darke, and<br />

J. A. Zugay, J. Med. Chem., 38, 305 (1995). A Priori Prediction of Activity for HIV-Protease<br />

Inhibitors Employ<strong>in</strong>g Energy M<strong>in</strong>imization <strong>in</strong> the Active Site.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!