19.02.2013 Views

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

Reviews in Computational Chemistry Volume 18

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

References 143<br />

178. J. J. P. Stewart, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and D. B. Boyd, Eds.,<br />

VCH Publishers, New York, 1990, Vol. 1, pp. 45–81. Semiempirical Molecular Orbital<br />

Methods. M. C. Zerner, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and D. B.<br />

Boyd, Eds., VCH Publishers, New York, 1991, Vol. 2, pp. 313–365. Semiempirical<br />

Molecular Orbital Methods.<br />

179. D. E. Williams, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and D. B. Boyd,<br />

Eds., VCH Publishers, New York, 1991, Vol. 2, pp. 219–271. Net Atomic Charge and<br />

Multipole Models for the Ab Initio Molecular Orbital Potential.<br />

<strong>18</strong>0. R. S. Mulliken, J. Chem. Phys., 23, <strong>18</strong>33, <strong>18</strong>41 (1955). Electronic Population Analysis on<br />

LCAO-MO Molecular Wave Functions. I. and II. Overlap Populations, Bond Orders, and<br />

Covalent Bond Energies. See also: S. M. Bachrach, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>,<br />

K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1994, Vol. 5, pp. 171–<br />

227. Population Analysis and Electron Densities from Quantum Mechanics.<br />

<strong>18</strong>1. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 107,<br />

3902–3909 (1985). AM1: A New General Purpose Quantum Mechanical Molecular Model.<br />

<strong>18</strong>2. W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys, 51, 2657–2664 (1969). Self-<br />

Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type<br />

Atomic Orbitals. See also: D. Feller and E. R. Davidson, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong><br />

<strong>Chemistry</strong>, K. B. Lipkowitz and D. B. Boyd, Eds., VCH Publishers, New York, 1990, Vol. 1,<br />

pp. 1–43. Basis Sets for Ab Initio Molecular Orbital Calculations and Intermolecular<br />

Interactions.<br />

<strong>18</strong>3. S. W. Rick and R. E. Cachau, J. Chem. Phys., 112, 5230–5241 (2000). The Non-Planarity of<br />

the Peptide Group: Molecular Dynamics Simulations with a Polarizable Two-State Model<br />

for the Peptide Bond.<br />

<strong>18</strong>4. G. Corongiu, Int. J. Quantum Chem., 42, 1209–1235 (1992). Molecular Dynamics Simulation<br />

for Liquid Water Us<strong>in</strong>g a Polarizable and Flexible Potential.<br />

<strong>18</strong>5. M. Sprik, J. Chem. Phys., 95, 6762–6769 (1991). Hydrogen Bond<strong>in</strong>g and the Static Dielctric<br />

Constant <strong>in</strong> Liquid Water.<br />

<strong>18</strong>6. P. G. Kusalik, F. Liden, and I. M. Svishchev, J. Chem. Phys., 103, 10169–10175 (1995).<br />

Calculation of the Third Virial Coefficient for Water.<br />

<strong>18</strong>7. S.-B. Zhu, S. S<strong>in</strong>gh, and G. W. Rob<strong>in</strong>son, Adv. Chem. Phys., 85, 627–731 (1994). Field-<br />

Perturbed Water.<br />

<strong>18</strong>8. A. Wallqvist and R. D. Mounta<strong>in</strong>, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz<br />

and D. B. Boyd, Eds., Wiley-VCH, New York, 1999, Vol. 13, pp. <strong>18</strong>3–247. Molecular<br />

Descriptions of Water: Derivation and Description.<br />

<strong>18</strong>9. J. C. Shelley and D. R. Bérard, <strong>in</strong> <strong>Reviews</strong> <strong>in</strong> <strong>Computational</strong> <strong>Chemistry</strong>, K. B. Lipkowitz and<br />

D. B. Boyd, Eds., Wiley-VCH, New York, 1998, Vol. 12, pp. 137–205. Computer Simulation<br />

of Water Physisorption at Metal–Water Interfaces.<br />

190. A. A. Chialvo and P. T. Cumm<strong>in</strong>gs, J. Phys. Chem., 100, 1309–1316 (1996). Microstructure<br />

of Ambient and Supercritical Water: Direct Comparison Between Simulation and Neutron<br />

Scatter<strong>in</strong>g Experiments.<br />

191. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, <strong>in</strong> Intermolecular<br />

Forces, B. Pullman, Ed., Reidel, Dordrecht, The Netherlands, 1981, pp. 331–342. Interaction<br />

Models for Water <strong>in</strong> Relation to Prote<strong>in</strong> Hydration.<br />

192. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Kle<strong>in</strong>, J. Chem.<br />

Phys., 79, 926–935 (1983). Comparison of Simple Potential Functions for Simulat<strong>in</strong>g Liquid<br />

Water.<br />

193. C. Millot and A. J. Stone, Mol. Phys., 77, 439–462 (1992). Towards an Accurate Intermolecular<br />

Potential for Water.<br />

194. U. Niesar, G. Corongiu, M.-J. Huang, M. Dupuis, and E. Clementi, Int. J. Quantum. Chem.<br />

Symp., 23, 421–443 (1989). Prelim<strong>in</strong>ary Observations on a New Water–Water Potential.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!