05.04.2013 Views

Introduction to Soil Chemistry

Introduction to Soil Chemistry

Introduction to Soil Chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

84 soil basics iv<br />

<strong>Soil</strong><br />

H<br />

H<br />

H<br />

H H<br />

H H<br />

H<br />

H H<br />

H H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H H H H<br />

H H H H<br />

H<br />

H H H H<br />

H<br />

H H<br />

H<br />

H<br />

H<br />

H H<br />

H H<br />

H H<br />

H<br />

H H<br />

H<br />

H<br />

H H<br />

H<br />

H H H H<br />

H H H H<br />

H<br />

H H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H<br />

H H H H<br />

H<br />

H<br />

H<br />

H<br />

H H<br />

H<br />

H<br />

H<br />

H H H H<br />

H H<br />

H<br />

H<br />

H<br />

H<br />

H H A<br />

H<br />

H<br />

H H H H<br />

H<br />

H H<br />

H<br />

H<br />

H H H<br />

H<br />

H H<br />

H H<br />

–<br />

A –<br />

A –<br />

A –<br />

A –<br />

A –<br />

M +<br />

M +<br />

M +<br />

M +<br />

M +<br />

M +<br />

M +<br />

H H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

H<br />

O<br />

O O<br />

O<br />

O H H<br />

O<br />

H O<br />

H<br />

O<br />

H H<br />

O<br />

O O<br />

O<br />

O<br />

H H<br />

H<br />

O<br />

O<br />

O<br />

O<br />

H<br />

O<br />

H O<br />

O<br />

O<br />

O O<br />

H H<br />

H<br />

H<br />

O<br />

O<br />

O<br />

O<br />

H<br />

H H H<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

O<br />

H H<br />

H<br />

H<br />

O O<br />

O<br />

O<br />

O<br />

H H<br />

O<br />

O<br />

H H H<br />

O<br />

O O<br />

H H H H<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O H H O<br />

H<br />

O<br />

O O O<br />

H H H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O O<br />

H<br />

O<br />

H<br />

O O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H H<br />

H<br />

O<br />

O<br />

Figure 4.8. A soil particle with a diffuse layer of hydrated ions around it. The dashed line represents<br />

the boundary of the layer of tightly held cations. This diagram is not meant <strong>to</strong> be an exact<br />

representation of the diffuse double layer around a soil particle.<br />

also give invaluable information about the time and amount of extractant<br />

needed for an extraction procedure.<br />

Two types of distribution coefficients can be measured and used in describing<br />

the distribution between solid and liquid phases. The first and simplest is<br />

the distribution between <strong>to</strong>tal solid and liquid phases. This can be represented<br />

by K d, as given by the following equations (where kg is kilogram and L is liter<br />

of soil solution):<br />

K<br />

K<br />

d<br />

om<br />

mg component kg soil<br />

=<br />

mg component L solution<br />

mg component kg organic matter<br />

=<br />

mg component L solution<br />

(4.2)<br />

For K om 2 applied <strong>to</strong> soil, the numera<strong>to</strong>r would be kg organic matter in soil.<br />

Organic matter in soil has a much higher sorptive capacity than does the inorganic<br />

component and so it is sometimes more useful <strong>to</strong> describe the distribution<br />

between organic matter and a component of interest, particularly<br />

organic components. This can be done using the distribution coefficient Kom,<br />

which denotes the distribution between organic matter and water. The equation<br />

for this distribution is also given in equations (4.2).<br />

2 A Koc where oc = organic carbon could be calculated if organic carbon is substituted in the<br />

equation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!