04.06.2013 Views

Gravity and Strings

Gravity and Strings

Gravity and Strings

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

84 A perturbative introduction to general relativity<br />

This is an equation in the constant coefficients a, b, c, d,....Tosolve it, we first observe<br />

that all the terms with the structure h∂∂∂h on the l.h.s. must vanish because they do not<br />

occur on the r.h.s. Then, we also impose the vanishing of all the terms with the structure<br />

∂h(∂∂h) β on the l.h.s. for the same reason. Finally, we identify the terms with structures<br />

∂ β h(∂∂h) <strong>and</strong> ∂h β (∂∂h) on both sides of the above equation. The result can be expressed<br />

in terms of two parameters x <strong>and</strong> y, which are left undetermined:<br />

a =− 1<br />

, b = 2 − y, c =−1, d = 1 − y, e = y, 2 f =−1,<br />

g =−1− x, i = 1, j =−1 + x, k = 1<br />

, l =−1 − x,<br />

4 2<br />

m = 1<br />

2<br />

, n = 1<br />

2<br />

, p =−1,<br />

q = y, r = x.<br />

4<br />

(3.198)<br />

On substituting these into the general expression for L (1) µσ <strong>and</strong> collecting all the terms<br />

proportional to the two parameters x <strong>and</strong> y,weobtain<br />

L (1) µσ = L (1)<br />

GR µσ + total derivatives,<br />

L (1)<br />

GR µσ =−1 2∂µh νρ ∂σ hνρ − ∂ ν h ρ µ∂νhρσ + ∂ ν h ρ (µ|∂ρhν|σ)<br />

+ 2∂ ν h ρ (µ∂σ)hνρ − ∂(µhσ) ν ∂νh − ∂ ν hµσ ∂ρh ρ ν<br />

− ∂νh ν (µ∂σ)h + ∂νhµσ ∂ ν h + 1<br />

2 ∂µh∂σ h + ηµσ LFP,<br />

(3.199)<br />

an unambiguous, unique, answer (up to total derivatives), which leads to a Lagrangian<br />

L (1) that is invariant to first order in χ under the gauge transformations Eq. (3.181). The<br />

equations of motion are fully determined <strong>and</strong> the gravitational energy–momentum tensor<br />

is the piece of these equations of motion that is proportional to χ,given by Eq. (3.196), or,<br />

more explicitly, by<br />

t (0) µσ 1<br />

GR = 2∂µ hλδ∂ σ h λδ + ∂λhδ µ ∂ λ h δσ − ∂λhδ µ ∂ δ h λσ + ∂λh µσ ∂δh δλ<br />

− 2∂ (µ h σ) δ∂λh λδ − 1<br />

2∂λh µσ ∂ λ h + ∂ (µ h σ)λ ∂λh<br />

+ η µσ − 3<br />

4∂αhβγ∂ α h βγ + 1<br />

2∂αhβγ∂ β h αγ + ∂λh λα ∂δh δ α<br />

− ∂λh λα ∂αh + 1<br />

4∂λh∂ λ h <br />

+ h αβ<br />

∂α∂βh µσ − 2∂α∂ (µ h σ) β + ∂ µ ∂ σ hαβ + 2η (σ α ˆD µ) β(h)<br />

− 1<br />

2 ηµ αη σ β ˆD ρ ρ(h) − 1<br />

2 ηαβD µσ (h) − η µσ ˆDαβ(h)<br />

<br />

. (3.200)<br />

This is clearly the energy–momentum tensor we were looking for. It is related to the<br />

Rosenfeld energy–momentum tensor Eq. (3.190) by<br />

t (0) µσ (0)<br />

GR − (t can µσ + D ρµ (h)hρ σ + ∂ρ ρµσ ) ≡ ∂ρ ρµσ<br />

GR−Ros ,<br />

ρµσ σ [ρ µ]ν λδ<br />

GR−Ros = ∂ν η η h hλδ + 2η ν[ρ h µ] λh λσ − 2η σ [ρ h µ]λ hλ ν<br />

(3.201)<br />

+ η σ [ρ h µ]ν h + η ν[µ h ρ]σ h − 1<br />

2ην[µ η ρ]σ h 2 .<br />

Summarizing: the Noether procedure allows us to find corrections to the free Fierz–Pauli<br />

theory order by order in the parameter χ, making it self-consistent to that given order.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!