04.03.2014 Views

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nutrients, underwater noise, oil spills, and <strong>the</strong><br />

spread<strong>in</strong>g of alien species. Many of <strong>the</strong> mar<strong>in</strong>e protected<br />

areas (MPAs), which have been established<br />

to protect <strong>the</strong> unique mar<strong>in</strong>e nature of <strong>the</strong> <strong>Baltic</strong><br />

<strong>Sea</strong> from human impact, are close to heavily trafficked<br />

areas (Figure 6.2.1).<br />

Maritime traffic is addressed by one of <strong>the</strong> four<br />

ma<strong>in</strong> segments of <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> Action Plan (BSAP).<br />

A number of management objectives have been<br />

established to <strong>in</strong>dicate <strong>the</strong> ma<strong>in</strong> areas of concern<br />

<strong>in</strong>clud<strong>in</strong>g, e.g., ’Safe maritime traffic without accidental<br />

pollution’, ‘M<strong>in</strong>imum sewage pollution from<br />

ships’, ‘No <strong>in</strong>troductions of alien species from ships’,<br />

and ‘M<strong>in</strong>imum air pollution from ships’.<br />

6.2.1 Impacts of maritime traffic on<br />

biodiversity<br />

Nutrient <strong>in</strong>puts<br />

Shipp<strong>in</strong>g activity contributes to <strong>the</strong> eutrophication<br />

of <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> through emissions of nitrogen<br />

oxides (NOx) and discharges of nitrogen and<br />

phosphorus conta<strong>in</strong>ed <strong>in</strong> sewage (for impacts on<br />

biodiversity, see Chapter 6.5, Eutrophication). NOx<br />

emitted to air is deposited both directly onto <strong>the</strong><br />

sea surface and <strong>in</strong> <strong>the</strong> catchment area, from where<br />

part of <strong>the</strong> nitrogen dra<strong>in</strong>s <strong>in</strong>to <strong>the</strong> sea via rivers.<br />

NOx deposited onto <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> is particularly<br />

effective <strong>in</strong> caus<strong>in</strong>g eutrophication because it is<br />

directly available for use by primary producers.<br />

Accord<strong>in</strong>g to <strong>the</strong> Co-operative Programme for<br />

Monitor<strong>in</strong>g and Evaluation of <strong>the</strong> Long-Range<br />

Transmission of Air Pollutants <strong>in</strong> Europe, EMEP<br />

(Bartnicki 2007), shipp<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> contributed<br />

9% of <strong>the</strong> total airborne nitrogen deposition<br />

directly to <strong>the</strong> sea <strong>in</strong> 2005. The major share of<br />

nutrients to <strong>the</strong> <strong>Baltic</strong> enters as waterborne <strong>in</strong>put<br />

from <strong>the</strong> catchment area (Knuuttila 2007) and<br />

shipp<strong>in</strong>g contributes only about 2% of <strong>the</strong> total<br />

nitrogen <strong>in</strong>puts to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> (Table 6.2.1). A<br />

recent study, however, suggests that, based on<br />

NOx emissions from ships, nitrogen deposition may<br />

be somewhat higher than previously estimated<br />

(Stipa et al. 2007). With a projected 2.6% annual<br />

<strong>in</strong>crease <strong>in</strong> shipp<strong>in</strong>g traffic <strong>in</strong> <strong>the</strong> <strong>Baltic</strong>, and assum<strong>in</strong>g<br />

no abatement measures, <strong>the</strong> estimated annual<br />

<strong>in</strong>put of NOx from maritime traffic alone has been<br />

estimated to <strong>in</strong>crease by roughly 50% until 2030<br />

(Stipa et al. 2007, IMO document MEPC 57/INF14).<br />

Nitrogen loads to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> orig<strong>in</strong>at<strong>in</strong>g from<br />

ships’ sewage discharges have been estimated to<br />

represent about 0.05% of <strong>the</strong> total waterborne<br />

nitrogen load and up to 0.5% of <strong>the</strong> total phosphorus<br />

load to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> (Table 6.2.1) (Huhta<br />

et al. 2007). These figures have been calculated<br />

based on <strong>the</strong> assumption that <strong>the</strong>re is no sewage<br />

treatment onboard ships (cargo ships, cruise ships<br />

and passenger/car ferries) and that all sewage is<br />

discharged <strong>in</strong>to <strong>the</strong> sea, i.e., <strong>the</strong> <strong>the</strong>oretical worstcase<br />

scenario. The proportion of nutrients orig<strong>in</strong>at<strong>in</strong>g<br />

from ships’ sewage water is thus relatively small<br />

compared to <strong>the</strong> total nutrient load to <strong>the</strong> <strong>Baltic</strong><br />

<strong>Sea</strong>. Nutrients <strong>in</strong> sewage discharge may never<strong>the</strong>less<br />

have considerable effects on <strong>the</strong> growth of<br />

pelagic phytoplankton because <strong>the</strong> nutrients are<br />

discharged directly to <strong>the</strong> open sea ecosystem. The<br />

amount of total nitrogen discharges from commercial<br />

ship traffic is comparable to <strong>the</strong> 500 tonnes<br />

of annual nitrogen load from <strong>the</strong> city of Hels<strong>in</strong>ki<br />

sewage treatment plant, which purifies <strong>the</strong> sewage<br />

of approximately 1 million people (Huuska & Mi<strong>in</strong>ala<strong>in</strong>en<br />

2007).<br />

Table 6.2.1. Magnitude of nitrogen (N) and phosphorus (P) <strong>in</strong>puts from shipp<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g nitrogen deposition<br />

from airborne emissions and sewage, and total waterborne and airborne load<strong>in</strong>g of nitrogen and<br />

phosphorus to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong>. Note that <strong>the</strong> estimates concern ei<strong>the</strong>r <strong>the</strong> year 2000 or 2005.<br />

Nitrogen Total N <strong>in</strong> 10 3 tonnes NOx <strong>in</strong> 10 3 tonnes<br />

Airborne N deposition from <strong>Baltic</strong> shipp<strong>in</strong>g <strong>in</strong> 2005 1 19 14<br />

Total deposition of airborne N to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> <strong>in</strong> 2005 1 208 86<br />

Sewage N from <strong>Baltic</strong> shipp<strong>in</strong>g <strong>in</strong> 2000 2 0.47 -<br />

Waterborne load<strong>in</strong>g of N to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> <strong>in</strong> 2005 3 620 300<br />

Phosphorus<br />

Total P <strong>in</strong> 10 3 tonnes<br />

Sewage P from <strong>Baltic</strong> shipp<strong>in</strong>g <strong>in</strong> 2000 2 0.16 -<br />

Waterborne load<strong>in</strong>g of P to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> <strong>in</strong> 2005 3 29 -<br />

1)<br />

Bartnicki 2007; 2) Huhta et al. 2007; 3) Knuuttila 2007.<br />

99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!