04.03.2014 Views

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Heavy metals<br />

Heavy metals, such as mercury and cadmium<br />

which are specifically addressed by <strong>the</strong> BSAP, are<br />

widely used <strong>in</strong> <strong>in</strong>dustrial products and processes.<br />

As an example, mercury is extensively used <strong>in</strong> <strong>the</strong><br />

chlor-alkali <strong>in</strong>dustry and cadmium <strong>in</strong> metal <strong>in</strong>dustries.<br />

Significant amounts of atmospherically transported<br />

heavy metals orig<strong>in</strong>ate from distant sources outside<br />

<strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> catchment area. For cadmium, lead<br />

and mercury, <strong>the</strong> proportion of distant sources<br />

located outside <strong>the</strong> HELCOM area was larger than<br />

half of <strong>the</strong> total emissions <strong>in</strong> 1996–2000 (HELCOM<br />

2005b). A large part of <strong>the</strong> waterborne <strong>in</strong>puts of<br />

heavy metals also orig<strong>in</strong>ates from non-HELCOM<br />

countries <strong>in</strong> <strong>the</strong> catchment area (HELCOM 2007f).<br />

For cadmium, lead and mercury, non-HELCOM<br />

countries accounted for 5% to 13% of total river<strong>in</strong>e<br />

transboundary <strong>in</strong>puts (HELCOM 2007f).<br />

Annual emissions of heavy metals from HELCOM<br />

countries to air have decreased dur<strong>in</strong>g <strong>the</strong> period<br />

from 1990 to 2006 by 47% for cadmium, 45% for<br />

mercury, and 86% for lead (Gusev 2008a) (Figure<br />

6.6.1). S<strong>in</strong>ce <strong>the</strong> mid-1990s, river<strong>in</strong>e heavy metal<br />

loads, especially those of cadmium and lead, have<br />

also decreased <strong>in</strong> several countries (Knuuttila <strong>in</strong><br />

prep.).<br />

The total atmospheric deposition of heavy metals<br />

<strong>in</strong>to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> dur<strong>in</strong>g 2006 was 7.1 tonnes of<br />

cadmium, 3.4 tonnes of mercury and about 234<br />

tonnes of lead (Gusev 2008b). The Belt <strong>Sea</strong> and<br />

Kattegat were <strong>the</strong> sub-bas<strong>in</strong>s receiv<strong>in</strong>g <strong>the</strong> highest<br />

amounts of heavy metal deposition. The reported<br />

waterborne loads to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> <strong>in</strong> 2006<br />

amounted to 47.5 tonnes of cadmium, 10.8 tonnes<br />

of mercury and 274.2 tonnes of lead (Knuuttila <strong>in</strong><br />

prep.).<br />

Organic pollutants<br />

The ma<strong>in</strong> source or pathway to <strong>the</strong> <strong>Baltic</strong> mar<strong>in</strong>e<br />

environment of tributylt<strong>in</strong> (TBT) and triphenylt<strong>in</strong><br />

(TPhT) is <strong>the</strong>ir use as anti-foulants on ship hulls<br />

and subsequent direct release to seawater. On<br />

<strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> ma<strong>in</strong> pathways of pentabromodiphenyl<br />

e<strong>the</strong>r (pentaBDE), octabromodiphenyl<br />

e<strong>the</strong>r (octaBDE) and decabromodiphenyl e<strong>the</strong>r<br />

(decaBDE), hexabromocyclododecane (HBCDD),<br />

perfluorooctane sulfonate (PFOS), perfluoroocta-<br />

HELCOM countries emissions,% of 1990<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1990<br />

1991<br />

Cadmium Lead Mercury<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

Figure 6.6.1. Total annual emissions (as % of 1990 emissions) of<br />

cadmium (Cd), mercury (Hg), and lead (Pb) to air from HELCOM<br />

countries <strong>in</strong> 1990–2006 (Gusev 2008a).<br />

noic acid (PFOA), short-cha<strong>in</strong> chlor<strong>in</strong>ated paraff<strong>in</strong>s<br />

(SCCP), and medium-cha<strong>in</strong> chlor<strong>in</strong>ated paraff<strong>in</strong>s<br />

(MCCP) to <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> are via municipal<br />

and <strong>in</strong>dustrial wastewaters and <strong>the</strong> atmosphere.<br />

Municipal and <strong>in</strong>dustrial wastewaters are also <strong>the</strong><br />

ma<strong>in</strong> sources of nonylphenols (NP), nonylphenol<br />

ethoxylates (NPE), octylphenols (OP), and octylphenol<br />

ethoxylates (OPE). The ma<strong>in</strong> pathways<br />

of endosulfan are via rivers receiv<strong>in</strong>g losses from<br />

agricultural land and from atmospheric deposition<br />

due to <strong>the</strong> application of agricultural pesticides<br />

conta<strong>in</strong><strong>in</strong>g endosulfan. Discharges from landfills<br />

and via storm water can be significant for some of<br />

<strong>the</strong> substances mentioned above (HELCOM 2007a,<br />

2007g, HELCOM 2009b).<br />

The net annual atmospheric deposition of polychlor<strong>in</strong>ated<br />

dibenzo-p-diox<strong>in</strong>s/polychlor<strong>in</strong>ated<br />

dibenzofurans (PCDD/Fs) to <strong>the</strong> surface of <strong>the</strong><br />

<strong>Baltic</strong> <strong>Sea</strong> has decreased by 59% dur<strong>in</strong>g <strong>the</strong> period<br />

1990–2006. At <strong>the</strong> sub-bas<strong>in</strong> level, <strong>the</strong> most significant<br />

decrease <strong>in</strong> PCDD/F deposition has been<br />

observed <strong>in</strong> <strong>the</strong> Belt <strong>Sea</strong> (73%) and Kattegat<br />

(65%). Currently, <strong>the</strong> highest levels of PCDD/F<br />

deposition over <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> have been observed<br />

for <strong>the</strong> Belt <strong>Sea</strong> and <strong>the</strong> lowest deposition fluxes<br />

for <strong>the</strong> Gulf of Bothnia (Gusev 2008c).<br />

6.6.2 Occurrence and impacts of<br />

hazardous substances on <strong>Baltic</strong><br />

biodiversity<br />

For many organic contam<strong>in</strong>ants, a full assessment<br />

of <strong>the</strong>ir levels and effects <strong>in</strong> <strong>Baltic</strong> mar<strong>in</strong>e biota is<br />

not possible ow<strong>in</strong>g to <strong>the</strong> lack of monitor<strong>in</strong>g and<br />

ecotoxicological data.<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

115

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!