04.03.2014 Views

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

32<br />

Spr<strong>in</strong>g bloom <strong>in</strong>dex<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

The shift from diatoms to d<strong>in</strong>oflagellates may<br />

have implications for <strong>the</strong> nutrient dynamics <strong>in</strong><br />

<strong>the</strong> summer and <strong>the</strong> <strong>in</strong>put of organic matter to<br />

<strong>the</strong> sediment, as diatoms usually sediment to <strong>the</strong><br />

seabed at <strong>the</strong> end of <strong>the</strong> bloom, whereas d<strong>in</strong>oflagellates<br />

are mostly rem<strong>in</strong>eralized <strong>in</strong> <strong>the</strong> upper water<br />

layers (Tamelander & Heiskanen 2004). However,<br />

a general decrease <strong>in</strong> diatoms has not yet been<br />

found <strong>in</strong> <strong>the</strong> Belt <strong>Sea</strong>, as confirmed by Wasmund et<br />

al. (2008) for <strong>the</strong> Kiel Bight for <strong>the</strong> past 100 years.<br />

Based on high-frequency monitor<strong>in</strong>g data on<br />

chlorophyll-a collected on merchant ships, <strong>the</strong><br />

spr<strong>in</strong>g bloom <strong>in</strong>tensity has been monitored s<strong>in</strong>ce<br />

1992 <strong>in</strong> <strong>the</strong> Arkona Bas<strong>in</strong>, <strong>the</strong> nor<strong>the</strong>rn <strong>Baltic</strong> Proper<br />

and <strong>the</strong> western Gulf of F<strong>in</strong>land (Flem<strong>in</strong>g & Kaitala<br />

2006). The <strong>in</strong>dex values of 0–1 060 from <strong>the</strong> period<br />

2000–2006 are comparable to those <strong>in</strong> previous<br />

years and do not <strong>in</strong>dicate any clear trends, although<br />

<strong>the</strong> average values have been slightly higher <strong>in</strong> <strong>the</strong><br />

2000s, particularly <strong>in</strong> <strong>the</strong> Gulf of F<strong>in</strong>land (Figure<br />

3.1.2; Flem<strong>in</strong>g & Kaitala 2006).<br />

1992-1999<br />

2000-2006<br />

Arkona Bas<strong>in</strong><br />

Nor<strong>the</strong>rn <strong>Baltic</strong><br />

Proper<br />

Western Gulf of<br />

F<strong>in</strong>land<br />

Figure 3.1.2. Phytoplankton spr<strong>in</strong>g bloom <strong>in</strong>dex <strong>in</strong> <strong>the</strong> open<br />

western Gulf of F<strong>in</strong>land, nor<strong>the</strong>rn <strong>Baltic</strong> Proper and Arkona Bas<strong>in</strong>.<br />

The bars represent average values with standard deviations for <strong>the</strong><br />

periods 1992–1999 and 2000–2006. Alg@L<strong>in</strong>e data modified from<br />

Flem<strong>in</strong>g & Kaitala (2006).<br />

Area covered (km 2 )<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

1997<br />

1998<br />

1999<br />

2000<br />

Bloom <strong>in</strong>tensity<br />

Area covered<br />

2001<br />

2002<br />

2003<br />

Figure 3.1.3. Area coverage and <strong>in</strong>tensity of cyanobacterial blooms,<br />

as <strong>in</strong>tegrated for <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> for 1997–2007. Annual summary<br />

values are based on <strong>the</strong> analysis of satellite image data. Modified<br />

from Hansson (2007).<br />

2004<br />

2005<br />

2006<br />

2007<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

Bloom <strong>in</strong>tensity (km 2 days)<br />

Cyanobacterial blooms<br />

Cyanobacteria are a natural component of <strong>the</strong><br />

phytoplankton community <strong>in</strong> most parts of <strong>the</strong><br />

<strong>Baltic</strong> <strong>Sea</strong> area (HELCOM 1996b, Hajdu et al.<br />

2008). They usually dom<strong>in</strong>ate <strong>in</strong> summer <strong>in</strong> <strong>the</strong><br />

coastal and open areas of most sub-bas<strong>in</strong>s of <strong>the</strong><br />

<strong>Baltic</strong> <strong>Sea</strong>, with <strong>the</strong> exception of <strong>the</strong> Belt <strong>Sea</strong> and<br />

<strong>the</strong> Kattegat (e.g. Jaanus et al. 2007, Wasmund &<br />

Siegel 2008).<br />

The cyanobacterial biomass has been lower <strong>in</strong><br />

<strong>the</strong> 2000s than <strong>in</strong> <strong>the</strong> 1980s–1990s <strong>in</strong> <strong>the</strong> Gulf<br />

of Riga, Eastern Gotland Bas<strong>in</strong> and Arkona Bas<strong>in</strong><br />

(Jaanus et al. 2007). In contrast, late-summer<br />

biomass of cyanobacteria has been reported to<br />

have <strong>in</strong>creased <strong>in</strong> <strong>the</strong> open nor<strong>the</strong>rn <strong>Baltic</strong> <strong>Sea</strong><br />

s<strong>in</strong>ce <strong>the</strong> late 1970s (Suikkanen et al. 2007; see<br />

also Kahru et al. 2007).<br />

Cyanobacterial blooms <strong>in</strong> <strong>the</strong> <strong>Baltic</strong> Proper are<br />

typically formed by <strong>the</strong> diazotrophic species Aphanizomenon<br />

flos-aquae, Anabaena spp. and Nodularia<br />

spumigena that can fix molecular nitrogen<br />

(Laamanen & Kuosa 2005, Mazur-Marzec et al.<br />

2006, Hajdu et al. 2007). N. spumigena blooms<br />

are potentially toxic, whereas no toxic blooms of<br />

A. flos-aquae have been recorded <strong>in</strong> <strong>the</strong> <strong>Baltic</strong><br />

<strong>Sea</strong>. The blooms of N 2<br />

-fix<strong>in</strong>g cyanobacteria as<br />

such do not necessarily <strong>in</strong>dicate streng<strong>the</strong>ned<br />

eutrophication (Gasiūnaitė et al. 2005, Tom<strong>in</strong>g &<br />

Jaanus 2007).<br />

Satellite images cover<strong>in</strong>g <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong> area show<br />

that <strong>the</strong> frequency and magnitude of <strong>the</strong> accumulation<br />

of cyanobacteria on <strong>the</strong> surface water have<br />

varied dur<strong>in</strong>g 1997–2007, but without a clear<br />

trend (Figure 3.1.3, Hansson 2007). However, <strong>the</strong><br />

average frequency of cyanobacterial accumulations<br />

was 39% higher <strong>in</strong> 1998–2006 than <strong>in</strong><br />

1979–1984, although <strong>the</strong> difference is not significant<br />

(Kahru et al. 2007). It should be noted that<br />

satellite images describe <strong>the</strong> surface accumulation<br />

of N. spumigena relatively well, but mostly ignore<br />

A. flos-aquae which generally locates deeper <strong>in</strong><br />

<strong>the</strong> water column (Kahru et al. 2007).<br />

The surface blooms are typically short <strong>in</strong> duration,<br />

i.e., from days to a few weeks (Hansson 2007), but<br />

<strong>the</strong>ir <strong>in</strong>fluence may last longer through <strong>the</strong> effects<br />

on near-bottom oxygen conditions and potential<br />

food-web effects (Vahtera et al. 2007). A low<br />

nitrogen-to-phosphorus ratio and calm and warm

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!