04.03.2014 Views

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

BSEP116B Biodiversity in the Baltic Sea - Helcom

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 COMMUNITIES<br />

Communities are assemblages of species with<strong>in</strong><br />

an ecosystem. The composition of species with<strong>in</strong> a<br />

community <strong>in</strong>fluences fundamental processes such<br />

as <strong>the</strong> productivity, stability and trophic <strong>in</strong>teractions<br />

with<strong>in</strong> <strong>the</strong> food web and <strong>the</strong>reby also <strong>the</strong><br />

overall function<strong>in</strong>g of <strong>the</strong> ecosystem. The communities<br />

specifically addressed <strong>in</strong> this chapter are<br />

<strong>Baltic</strong> phytoplankton, habitat-form<strong>in</strong>g species,<br />

zooplankton, benthic <strong>in</strong>vertebrates, and fish. The<br />

different communities form an <strong>in</strong>tricate web with<br />

predatory, competitive, synergistic and commensal<br />

<strong>in</strong>teractions. Thus, changes <strong>in</strong> one community<br />

<strong>in</strong>evitably affect o<strong>the</strong>r components of <strong>the</strong> <strong>Baltic</strong><br />

biodiversity (Figure 3.1).<br />

The <strong>Baltic</strong> <strong>Sea</strong> Action Plan <strong>in</strong>cludes <strong>the</strong> ecological<br />

objective ’Thriv<strong>in</strong>g and balanced communities of<br />

plants and animals’. Ow<strong>in</strong>g to <strong>the</strong>ir fundamental<br />

role <strong>in</strong> <strong>the</strong> ecosystem, assessment of <strong>the</strong> composition<br />

of <strong>the</strong> communities as well as of <strong>the</strong>ir key<br />

species provides a central component for determ<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> conservation status of <strong>the</strong> <strong>Baltic</strong> <strong>Sea</strong>.<br />

3.1 Phytoplankton<br />

communities<br />

The <strong>Baltic</strong> <strong>Sea</strong> phytoplankton community is a<br />

diverse mixture of microscopic algae represent<strong>in</strong>g<br />

several taxonomic groups, with more than 1 700<br />

species recorded (Hällfors 2004). The phytoplankton<br />

composition <strong>in</strong> different sub-bas<strong>in</strong>s of <strong>the</strong><br />

<strong>Baltic</strong> <strong>Sea</strong> depends, among o<strong>the</strong>r th<strong>in</strong>gs, on <strong>the</strong><br />

sal<strong>in</strong>ity (Carstensen et al. 2004, Wasmund & Siegel<br />

2008). Diatoms and d<strong>in</strong>oflagellates are characteristic<br />

<strong>in</strong> <strong>the</strong> sal<strong>in</strong>e waters of <strong>the</strong> sou<strong>the</strong>rn <strong>Baltic</strong><br />

<strong>Sea</strong>, <strong>the</strong> Belt <strong>Sea</strong> and <strong>the</strong> Kattegat, whereas phytoplankton<br />

groups preferr<strong>in</strong>g less sal<strong>in</strong>e water, such<br />

as cyanobacteria and chlorophytes, are commonly<br />

found <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn <strong>Baltic</strong> <strong>Sea</strong>. The geographic<br />

distribution pattern complicates <strong>the</strong> use of certa<strong>in</strong><br />

phytoplankton groups as <strong>Baltic</strong>-wide <strong>in</strong>dicators<br />

of <strong>the</strong> ecological state (Carstensen et al. 2004,<br />

Gasiūnaitė et al. 2005).<br />

Phytoplankton are dom<strong>in</strong>ant primary producers <strong>in</strong><br />

both <strong>the</strong> coastal and open <strong>Baltic</strong> <strong>Sea</strong>, and serve<br />

as <strong>the</strong> energy source for <strong>the</strong> higher components<br />

of <strong>the</strong> food web. The socio-economic importance<br />

of phytoplankton is largely associated with <strong>the</strong><br />

negative impact of algal blooms and <strong>the</strong>ir potential<br />

toxicity (HELCOM 2006a). Algal blooms decrease<br />

water transparency and light availability, thus<br />

affect<strong>in</strong>g submerged vegetation <strong>in</strong> <strong>the</strong> coastal<br />

areas. In addition, blooms <strong>in</strong>crease <strong>the</strong> sedimentation<br />

of organic material, which, <strong>in</strong> turn, <strong>in</strong>creases<br />

oxygen consumption <strong>in</strong> near-bottom waters and<br />

<strong>in</strong>duces <strong>in</strong>ternal nutrient load<strong>in</strong>g (HELCOM 2002).<br />

Dense and potentially toxic blooms reduce <strong>the</strong><br />

recreational use of <strong>the</strong> water, pose a health risk,<br />

and have economic implications, e.g., for fisheries.<br />

Blooms of toxic phytoplankton species may<br />

also <strong>in</strong>hibit <strong>the</strong> growth and reproduction of o<strong>the</strong>r<br />

aquatic organisms (e.g., Uronen 2007).<br />

30<br />

Figure 3.1. Food web illustration depict<strong>in</strong>g <strong>the</strong> l<strong>in</strong>ks among <strong>Baltic</strong> <strong>Sea</strong> communities (Hermanni Backer).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!