20.11.2012 Views

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modell<strong>in</strong>g f<strong>in</strong>ancial transaction price movements: a dynamic <strong>in</strong>teger count data model 173<br />

where f − (·) denotes the p.d.f. <strong>of</strong> a standard count data model. Comb<strong>in</strong><strong>in</strong>g the s<strong>in</strong>gle<br />

components leads to the follow<strong>in</strong>g p.d.f. for the transaction price changes:<br />

h<br />

i h<br />

i<br />

Pr½Yi¼yjF i i 1Š<br />

¼ Pr½Yi < 0jF i 1ŠhðyjF<br />

i i 1Þ<br />

Pr½Yi¼0jF i 1Š<br />

h<br />

Pr½Yi > 0jF i 1Šhþ<br />

i þ<br />

i<br />

ðyijF i 1Þ<br />

;<br />

i 0 i<br />

(2.4)<br />

where i ¼ 1fYi0g are b<strong>in</strong>ary variables <strong>in</strong>dicat<strong>in</strong>g<br />

positive, negative, or no price change for transaction i.<br />

A more parsimonious distribution results if one assumes that h − (·) and h + (·)<br />

arise from the same parametric family <strong>of</strong> probability density functions. Based on<br />

this assumption, the stochastic behavior <strong>of</strong> positive and negative price movements<br />

can be summarized <strong>in</strong> a conditional p.d.f. for the absolute price changes Si ≡∣Yi∣ conditional on the price direction:<br />

Pr½Si¼sijSi > 0; Di; F i 1Š<br />

¼ hsijDi; ð F i<br />

8<br />

< 1 if Yi < 0;<br />

1Þ<br />

with<br />

Di ¼<br />

:<br />

0<br />

1<br />

if<br />

if<br />

Yi ¼ 0;<br />

Yi > 0;<br />

(2.5)<br />

where h(·) is the p.d.f. <strong>of</strong> a truncated-at-zero count data model. For the<br />

parsimonious specification, the p.d.f. for a transaction price change is:<br />

Pr½Yi¼yijF i 1Š<br />

¼ Pr½Yi < 0jF i 1Š<br />

i Pr½Yi¼0jF i 1Š<br />

0 i Pr½Yi > 0jF i 1Š<br />

þ<br />

i<br />

½hðjyijjDi; F i 1ÞŠ<br />

1 0 ð i Þ<br />

: ð2:6Þ<br />

In this case, the result<strong>in</strong>g sample log-likelihood function <strong>of</strong> the ICH-model<br />

consists <strong>of</strong> two additive components:<br />

where:<br />

L ¼ Xn<br />

i¼1<br />

ln Pr ½Yi ¼ yijF i 1Š<br />

¼ Xn<br />

L1;i þ<br />

i¼1<br />

Xn<br />

L2;i; (2.7)<br />

i¼1<br />

L1;i¼ i ln Pr½Yi < 0jF i 1Šþ<br />

0 i ln Pr Yi ½ ¼ 0jF i 1Šþ<br />

þ i ln Pr½Yi > 0jF i 1Š<br />

L2;i ¼ 1<br />

0<br />

(2.8)<br />

i ln hðjyijjDi; F i 1Þ:<br />

(2.9)<br />

The component ∑L 1,i is the log-likelihood <strong>of</strong> the mult<strong>in</strong>omial process<br />

determ<strong>in</strong><strong>in</strong>g the direction <strong>of</strong> prices, while ∑L 2,i is the log-likelihood <strong>of</strong> the<br />

truncated-at-zero count process for the absolute size <strong>of</strong> the price change. If there<br />

are no parametric restrictions across the two likelihoods, we can maximize the<br />

complete likelihood (2.7) by separately maximiz<strong>in</strong>g its components (2.8) and (2.9).<br />

This reduces the computational burden considerably. In the follow<strong>in</strong>g, we now

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!