20.11.2012 Views

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Semiparametric estimation for f<strong>in</strong>ancial durations 231<br />

Assum<strong>in</strong>g that ϕ(u, v) = exp(u+v), the seasonal component is estimated through<br />

the follow<strong>in</strong>g expression<br />

ˆφϑ1,ξ(t ′ 1<br />

0 ) =<br />

γν log<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

1<br />

nh<br />

� ni=1 K<br />

�<br />

t ′<br />

0−t ′ �<br />

i<br />

h<br />

�<br />

1 �ni=1 nh K<br />

di<br />

exp � ψ(¯di−1,¯yi−1;ϑ1) �<br />

�<br />

t ′<br />

0−t ′ �<br />

i<br />

h<br />

� γ<br />

⎫<br />

⎪⎬<br />

. (13)<br />

⎪⎭<br />

This closed form estimator can be plugged <strong>in</strong>to (11), reduc<strong>in</strong>g the simultaneous<br />

optimization problem to a standard ML procedure. Two useful particular cases<br />

are nested <strong>in</strong> this estimator. If ν = 1, we obta<strong>in</strong> the nonparametric estimator<br />

when p(·) is a Weibull density function. And ν = γ = 1 corresponds to the<br />

exponential density. In all cases, the nonparametric seasonal curve is estimated<br />

by a transformation <strong>of</strong> the Nadaraya–Watson nonparametric regression estimator<br />

<strong>of</strong> the duration—adjusted by the dynamic component—on the time-<strong>of</strong>-the-day at<br />

time t ′ 0 .<br />

The results available <strong>in</strong> the earlier literature were obta<strong>in</strong>ed for <strong>in</strong>dependent<br />

observations and hence do not hold for tick-by-tick data. The follow<strong>in</strong>g Theorem<br />

shows the equivalent statistical results that allows us to make correct <strong>in</strong>ference<br />

about the unknown parameters <strong>of</strong> the Log-ACD model (the pro<strong>of</strong> is given <strong>in</strong> the<br />

Appendix and Eq. (8) is simplified to log p (d; φ,η)):<br />

Theorem 1: Let η = (ϑ1 ξ) T , and ˆηn be the vector <strong>of</strong> correspond<strong>in</strong>g parametric<br />

estimates. Under conditions (L.1), (L.2), (A.1) to (A.3), (B.1), and (B.3) to (B.6)<br />

stated <strong>in</strong> the Appendix<br />

where<br />

and<br />

√ �<br />

n ˆηn − η � �<br />

→d N 0,I −1<br />

�<br />

η (φ,η) , (14)<br />

� �<br />

∂<br />

∂<br />

Iη (φ,η) = E log p (d; φ,η) log p (d; φ,η)<br />

∂η ∂ηT � �<br />

∂<br />

∂<br />

− E log p (d; φ,η) log p (d; φ,η)<br />

∂η ∂φ<br />

�<br />

∂2 �−1<br />

× E log p (d; φ,η)<br />

∂φ2 � �<br />

∂<br />

∂<br />

× E log p (d; φ,η) log p (d; φ,η)<br />

∂φ ∂ηT √ �<br />

nh ˆφ ˆηn (t′ 0 ) − φ(t′ 0 )<br />

�<br />

→d N � 0,V � t ′ 0 ,η�� , (15)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!