20.11.2012 Views

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

230 J. M. Rodríguez-Poo et al.<br />

Standard ML techniques do not apply directly s<strong>in</strong>ce the estimation <strong>of</strong> the parameter<br />

vector, ϑ1 and ξ, does not necessarily provide consistent estimators <strong>in</strong> the<br />

presence <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite dimensional nuisance parameters. In order to implement valid<br />

<strong>in</strong>ference not only on the parameter estimators <strong>of</strong> the dynamic component but on<br />

the estimated seasonal curve as well, we propose the generalized pr<strong>of</strong>ile likelihood<br />

approach. It has been <strong>in</strong>troduced, <strong>in</strong> an i.i.d. context, by Sever<strong>in</strong>i and Wong<br />

(1992). The basic idea <strong>of</strong> this method is to estimate the nonparametric function φ(·)<br />

by maximiz<strong>in</strong>g a local (and hence smoothed) likelihood function (see Staniswalis<br />

(1989)), and simultaneously estimate the parameter vector ϑ1 and ξ by maximiz<strong>in</strong>g<br />

the unsmoothed likelihood function. For a given value <strong>of</strong> the time-<strong>of</strong>-the-day,<br />

t ′ 0 ∈[to,tc], and fixed values <strong>of</strong> ϑ1 and ξ, we estimate φ(t ′ 0 ) as the solution <strong>of</strong> the<br />

problem<br />

ˆφϑ1,ξ(t ′ 1<br />

0 ) = arg sup<br />

φ∈� nh<br />

n�<br />

K<br />

i=1<br />

�<br />

t ′<br />

0 − t ′ �<br />

i<br />

log p<br />

h<br />

� di| ¯di−1, ¯yi−1; ϑ1,φ,ξ � , (9)<br />

where K(·) is a kernel function and h is the correspond<strong>in</strong>g bandwidth. Note also<br />

that all estimators depend on ϑ1 and ξ. Then, ˆφϑ1,ξ(t ′ 0 ) must fulfill the first order<br />

condition<br />

n�<br />

�<br />

1 t ′<br />

0 − t<br />

K<br />

nh<br />

′ �<br />

i ∂<br />

�<br />

log p di| ¯di−1, ¯yi−1; ϑ1, ˆφϑ1,ξ(t<br />

h ∂φ ′ �<br />

0 ), ξ = 0. (10)<br />

i=1<br />

Given the above estimates for the nonparametric part, a simple ML estimation for<br />

ϑ1 and ξ is performed<br />

and<br />

�<br />

ˆϑ1n ˆξn<br />

�T = arg sup<br />

sup<br />

n�<br />

ϑ1∈� ξ∈�<br />

i=1<br />

�<br />

ˆϑ1n ˆξn<br />

�<br />

must fulfill the first order condition<br />

n�<br />

i=1<br />

∂<br />

log p<br />

T ∂ (ϑ1 ξ)<br />

�<br />

log p di| ¯di−1, ¯yi−1; ϑ1, ˆφϑ1,ξ(t ′ �<br />

i−1 ), ξ<br />

(11)<br />

�<br />

di| ¯di−1, ¯yi−1; ˆϑ1n, ˆφ ˆϑ1n,ˆξn (t′ i−1 ), �<br />

ˆξn = 0. (12)<br />

The procedure is implemented as follows: (1) For a given t ′ 0<br />

and ξ, and f<strong>in</strong>d the ˆφϑ1,ξ(t ′ 0 ) that fulfills condition (9). Repeat it for all t′ i<br />

, fix the values <strong>of</strong> ϑ<br />

. (2) Plug<br />

the vector ˆφϑ1,ξ(t ′ i ) <strong>in</strong>to (11). The log-likelihood is hence concentrated on ϑ and<br />

ξ, which can be easily estimated. (3) Given the estimators ˆϑn and ˆξn come back to<br />

(1). (4) Iterate until (10) and (12) are fulfilled. This procedure is computationally<br />

<strong>in</strong>tensive as the optimization <strong>in</strong> (1) has to be done n times. It would be significantly<br />

alleviated if we would have a closed form expression for ˆφϑ1,ξ(t ′ 0 ). This is the case<br />

for log p be<strong>in</strong>g one <strong>of</strong> the log-likelihoods that are typically assumed for f<strong>in</strong>ancial<br />

durations.<br />

As an example, assume that p(·) <strong>in</strong> the log-likelihood function (2) is the<br />

generalized gamma density function, i.e., εi ∼ GG (1,γ,ν) then<br />

�<br />

di ∼ GG ϕ � ψ � � �� �<br />

¯di−1,<br />

−1<br />

¯yi−1; ϑ1 ,φϑ1,ξ ,γ,ν .<br />

� t ′ i−1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!