20.11.2012 Views

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

recent developments in high frequency financial ... - Index of

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

36 K. Bien et al.<br />

and<br />

x k t ≡ (xk −1t ,xk 1t )′ ⎧<br />

⎨ (1,0)<br />

=<br />

⎩<br />

′ if Ykt < 0<br />

(0,0) ′ if Ykt = 0<br />

(0,1) ′ if Ykt > 0,<br />

denotes the state vector, whether Ykt decreases, stays equal or <strong>in</strong>creases at time t.<br />

Thus, ξk t represents the standardized state vector xk t .<br />

The conditional density <strong>of</strong> the size process is modelled with an at-zerotruncated<br />

Negative B<strong>in</strong>omial (NegB<strong>in</strong>) distribution:<br />

fs(|ykt||Ykt �= 0, Ft−1)<br />

≡ Ŵ(κk +|ykt|)<br />

Ŵ(κk ��κ k + ωk t<br />

)Ŵ(|ykt|+1) κk � κ k<br />

(7)<br />

�−1�<br />

ωk t<br />

− 1<br />

ωk t + κk �|ykt|<br />

, (8)<br />

where |ykt|∈N \{0}, κk > 0 denotes the dispersion parameter and scal<strong>in</strong>g parameter<br />

ωk t is parameterized us<strong>in</strong>g the exponential l<strong>in</strong>k function with a generalized<br />

autoregressive mov<strong>in</strong>g average model (GLARMA(p,q)) <strong>of</strong> Shephard (1995) <strong>in</strong> the<br />

follow<strong>in</strong>g way:<br />

ln ω k t = δ ˜Dt + ˜λ k t with ˜λ k t =˜µ + Sk (ν,τ,K)+ β1 ˜λ k t−1<br />

+ α1 ˜ξ k<br />

t−1 .<br />

where ˜Dt ∈{−1, 1} <strong>in</strong>dicates a negative or positive value <strong>of</strong> Ykt at time t with the<br />

correspond<strong>in</strong>g coefficient denoted by δ. ˜µ denotes the constant term. β1 as well as<br />

α1 denote coefficients and ˜ξ k<br />

t be<strong>in</strong>g constructed as<br />

˜ξ k<br />

t ≡ |Ykt|−E(|Ykt||Ykt �= 0, Ft−1)<br />

,<br />

V(|Ykt||Ykt �= 0, Ft−1) 1/2<br />

is the <strong>in</strong>novation term that drives the GLARMA model <strong>in</strong> λk t . The conditional<br />

moments <strong>of</strong> the at-zero-truncated NegB<strong>in</strong> distribution are given by<br />

E(|Ykt||Ykt �= 0, Ft−1) = ωk t<br />

1 − ϑk ,<br />

t<br />

V(|Ykt||Ykt �= 0, Ft−1) = ωk t<br />

1 − ϑ k t<br />

�<br />

−<br />

where ϑ k t is given by ϑ k t =[κk /(κ k + ω k t )]κ .<br />

S k (ν,τ,K)≡ ν0τ +<br />

ω k t<br />

(1 − ϑ k t )<br />

�2 �<br />

ϑ k t − 1 − ϑk t<br />

κk �<br />

,<br />

K�<br />

ν2l−1 s<strong>in</strong>(2π(2l − 1)τ) + ν2l cos(2π(2l)τ) (9)<br />

l=1<br />

is a Fourier flexible form used to capture diurnal seasonality, where τ is the <strong>in</strong>traday<br />

time standardized to [0, 1] and ν isa2K + 1 dimensional parameter vector.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!