28.02.2013 Views

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

τ xx<br />

τ yy<br />

1<br />

--<br />

2<br />

τ ∂ xx<br />

– -------- Δ x<br />

∂x<br />

y<br />

1<br />

--<br />

2<br />

τ ∂ yy<br />

+ -------- Δ y<br />

∂y<br />

τ yx<br />

1<br />

--<br />

2<br />

τ ∂ yx<br />

– -------- Δ x<br />

∂x<br />

2. Governing Equations and Boundary Conditions 35<br />

volume approach zero. The application of the equation of motion then reduces to a stress balance on the control volume. Summing<br />

the <strong>for</strong>ces (stress × area) in the x-direction from figure 2.4 gives<br />

τ xz<br />

1<br />

τ ΔxΔy τ --<br />

xs xx 2<br />

∂τ ⎛ --------- xx<br />

+ Δx⎞<br />

1<br />

Δz --<br />

⎝ ∂x ⎠ 2<br />

∂ζ ⎛ + -----Δx ⎞ 1<br />

Δy τxx --<br />

⎝ ∂x ⎠<br />

2<br />

∂τ ⎛ – ----------- xx<br />

Δx⎞<br />

1<br />

Δz --<br />

⎝ ∂x ⎠ 2<br />

∂ζ<br />

+<br />

–<br />

⎛ – -----Δx ⎞Δy ⎝ ∂x ⎠<br />

1<br />

τ --<br />

xy 2<br />

∂τ ⎛ + ---------- xyΔy⎞<br />

1<br />

Δz --<br />

⎝ ∂y ⎠ 2<br />

∂ζ ⎛ + -----Δy ⎞ 1<br />

Δx τxy --<br />

⎝ ∂y ⎠<br />

2<br />

∂τ ⎛ – --------- xyΔy⎞<br />

1<br />

Δz --<br />

⎝ ∂y ⎠ 2<br />

∂ζ<br />

+<br />

–<br />

⎛ – -----Δy ⎞Δx ⎝ ∂y ⎠<br />

1<br />

τ --<br />

xz 2<br />

∂τxz – ⎛ – ---------Δz ⎞ΔxΔy= 0.<br />

⎝ ∂z ⎠<br />

Solving this equation <strong>for</strong> τ xs , then cancelling terms and eliminating the terms which vanish as Δz → 0, yields<br />

For the y-direction, the corresponding relation is<br />

z<br />

Datum<br />

1<br />

--<br />

2<br />

τ ∂ xz<br />

– -------- Δz<br />

∂z<br />

τ xs<br />

τ ys<br />

x<br />

τ xy<br />

τ ys<br />

τ yz<br />

1<br />

--<br />

2<br />

τ ∂ xy<br />

+ -------- Δ y<br />

∂y<br />

1<br />

--<br />

2<br />

τ ∂ yz<br />

– -------- Δz<br />

∂z<br />

τxs<br />

τ xy<br />

τ yy<br />

τ yx<br />

1<br />

--<br />

2<br />

τ ∂ xy<br />

– -------- Δ y<br />

∂y<br />

Control<br />

volume<br />

1<br />

--<br />

2<br />

τ ∂ yx<br />

+ -------- Δ x<br />

∂x<br />

(2.53)<br />

∂ζ ∂ζ<br />

= – τ ----- – τ ----- + τ . (2.54)<br />

xx ∂x xy ∂y xz<br />

∂ζ ∂ζ<br />

= – τ ----- – τ ----- + τ . (2.55)<br />

yx ∂x yy ∂y yz<br />

τ xx<br />

1<br />

--<br />

2<br />

τ ∂ yy<br />

– -------- Δ y<br />

∂y<br />

1<br />

--<br />

2<br />

τ ∂ xx<br />

+ -------- Δ x<br />

∂x<br />

Figure 2.4. Viscous stresses on a surface layer of a water body affected by a wind stress with components<br />

τxs and τys .<br />

1<br />

Expressions in the <strong>for</strong>m τ --<br />

xy<br />

represent the viscous stresses on each vertical control volume face.<br />

2<br />

∂τ xy<br />

+<br />

----------Δy<br />

∂y

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!