28.02.2013 Views

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

38 A <strong>Semi</strong>-<strong>Implicit</strong>, <strong>Three</strong>-<strong>Dimensional</strong> <strong>Model</strong> <strong>for</strong> <strong>Estuarine</strong> Circulation<br />

2.4.2.1 Kinematic Bottom Condition<br />

The kinematic bottom condition is derived by balancing mass fluxes on a thin fluid layer immediately above the bottom of<br />

the estuary (fig. 2.6). The result is<br />

u ∂h<br />

----- v<br />

∂x<br />

∂h<br />

+ ----- + w = 0 on z = – h(<br />

x, y)<br />

, (2.59)<br />

∂y<br />

which is similar to the result at the surface except that the location of the bottom z = – h (x, y), unlike the free surface, is not a<br />

function of time and there<strong>for</strong>e ∂h/∂t = 0. In this case, h represents a vertical distance measured positive downward from a datum<br />

(such as a mean sea level height) above the bottom. Equation 2.59 is sometimes referred to as the tangential flow condition because<br />

it requires the flow on the boundary to be tangent to the boundary and not to separate from it.<br />

1<br />

u --<br />

2<br />

u ∂<br />

– ----- Δ x<br />

∂x<br />

1<br />

Δ z --<br />

2<br />

h ∂<br />

– ----- Δ x<br />

∂x<br />

1<br />

Δ z --<br />

2<br />

h ∂<br />

+ ----- Δ y<br />

∂y<br />

1<br />

v --<br />

2<br />

v ∂<br />

+ ---- Δ y<br />

∂y<br />

y<br />

Δ y<br />

z<br />

Datum<br />

h(x,y)<br />

w<br />

Δ z<br />

x<br />

1<br />

--<br />

2<br />

w ∂<br />

+ ------ Δz<br />

∂z<br />

Δ x<br />

1<br />

v --<br />

2<br />

v ∂<br />

– ---- Δ y<br />

∂y<br />

Control<br />

volume<br />

1<br />

Δ z --<br />

2<br />

h ∂<br />

+ ----- Δ x<br />

∂x<br />

1<br />

u --<br />

2<br />

u ∂<br />

+ ----- Δ x<br />

∂x<br />

1<br />

Δ z --<br />

2<br />

h ∂<br />

– ----- Δ y<br />

∂y<br />

Figure 2.6. Sketch showing velocities <strong>for</strong> mass flux balance on a bottom control volume in three dimensions.<br />

1<br />

Expressions in the <strong>for</strong>m u -- represent the velocities on each control volume face. Expressions in the <strong>for</strong>m<br />

2<br />

represent the heights of each vertical control volume face.<br />

∂u<br />

+ -----Δx<br />

∂x<br />

1<br />

Δz --<br />

2<br />

∂h<br />

+<br />

-----Δx<br />

∂x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!