28.02.2013 Views

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3. Layer Averaging the Governing Equations 59<br />

zk -<br />

Here < > is shorthand notation <strong>for</strong> the layer integral ∫<br />

1 /2<br />

( ) dz.<br />

zk + 1 /2<br />

simplified by using the fundamental theorem of calculus. Thus<br />

The integral of a term involving a derivative of z can be<br />

where the fractional subscripts k – 1⁄ 2 and k 1⁄ 2<br />

z<br />

k – 1⁄ 2<br />

∫ F<br />

z<br />

k + 1⁄ 2<br />

-----<br />

∂F<br />

dz<br />

=<br />

∂z<br />

k – 1⁄ – F<br />

2 k + 1⁄ , (3.11)<br />

2<br />

+ indicate that the variable F is evaluated at the interface between two layers.<br />

Formally, an interface value is defined by Fk + 1⁄ = [ Fxyzt ( , , , ) ]<br />

2<br />

z = zk . For computational purposes, the interface values can<br />

+ 1⁄ 2<br />

be evaluated as the simple average of the adjacent layer-averages of the same variables, such as<br />

or, if unequal layer heights are used, the <strong>for</strong>mula<br />

Fk + 1⁄ 2<br />

Fk 1⁄ 2<br />

can be applied with θ = hk ⁄ ( hk + hk + 1)<br />

to improve the accuracy of interpolations.<br />

3.2 Continuity Equation<br />

Integration of the continuity equation over a layer yields<br />

z<br />

k – 1⁄ 2<br />

∫z<br />

k + 1⁄ 2<br />

or, after substitution of equations 3.9 and 3.11,<br />

∂Uk<br />

∂Vk<br />

-------- + –<br />

∂x<br />

∂y<br />

1<br />

= -- ( F<br />

2 k + Fk + 1)<br />

(3.12)<br />

+ = θFk + 1 + ( 1 – θ)Fk<br />

(3.13)<br />

z<br />

k – 1⁄ 2<br />

∫z<br />

k + 1⁄ 2<br />

z<br />

k – 1⁄ 2<br />

∫z<br />

k + 1⁄ 2<br />

∂u<br />

∂v<br />

∂w<br />

----- dz + ---- dz + ------ dz = 0<br />

(3.14)<br />

∂x<br />

∂y<br />

∂z<br />

∂zk<br />

– 1⁄ ∂z<br />

2<br />

k – 1⁄ 2<br />

-------- uk – 1 ---------------<br />

⁄ + v<br />

2<br />

k – 1 ---------------<br />

⁄ – w<br />

2<br />

k – 1⁄ 2<br />

∂x<br />

∂y<br />

∂zk<br />

+ 1⁄ ∂z<br />

2<br />

k + 1⁄ 2<br />

uk + 1 ---------------<br />

⁄ + v<br />

2<br />

k + 1 ---------------<br />

⁄ – w<br />

2<br />

k + 1⁄ 2<br />

+ = 0 .<br />

∂x<br />

∂y<br />

(3.15)<br />

The bracketed terms in equation 3.15 are simplified by applying the boundary conditions <strong>for</strong> each layer. With the exception of the<br />

free surface and the bottom of the estuary, the layer interfaces are horizontal; thus,<br />

∂zk<br />

± 1⁄ 2 --------------- = 0 . (3.16)<br />

∂x<br />

At the free surface and the bottom, the kinematic boundary conditions presented in Chapter 2 (eqs. 2.52 and 2.59) are applicable.<br />

These conditions, written in the present notation, are<br />

and<br />

∂z1<br />

∂z1<br />

⁄ 2 ⁄ ∂z1<br />

2<br />

-------- u1 -------- ⁄ 2<br />

+<br />

∂t<br />

⁄ + v1 --------<br />

2 ∂x<br />

⁄ – w1 2 ∂y<br />

⁄ = 0<br />

(3.17)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!