28.02.2013 Views

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

60 A <strong>Semi</strong>-<strong>Implicit</strong>, <strong>Three</strong>-<strong>Dimensional</strong> <strong>Model</strong> <strong>for</strong> <strong>Estuarine</strong> Circulation<br />

1 where the subscripts ⁄ 2 and km 1⁄ 2<br />

∂zkm<br />

+ 1⁄ ∂z<br />

2<br />

km + 1⁄ 2<br />

ukm + 1 -------------------<br />

⁄ v<br />

2<br />

km + 1 -------------------<br />

⁄ – w<br />

2<br />

km + 1⁄ 2<br />

∂x<br />

+ = 0 , (3.18)<br />

∂y<br />

+ refer to the free surface and the bottom, respectively. Applying the boundary conditions to<br />

equation 3.15 results in the following <strong>for</strong>ms of the continuity equations <strong>for</strong> surface, middle, and bottom layers:<br />

Surface layer,<br />

Middle layers,<br />

Bottom layer,<br />

wk – 1⁄ – w<br />

2 k + 1⁄ 2<br />

∂ζ<br />

–<br />

∂t<br />

----- w3⁄ 2<br />

∂U1<br />

∂V1<br />

+ --------- + -------- = 0 ; (3.19)<br />

∂x<br />

∂y<br />

∂Uk<br />

∂Vk<br />

+ -------- + -------- = 0 k = 2, 3 , ... , km – 1 ; (3.20)<br />

∂x<br />

∂y<br />

wkm – 1⁄ 2<br />

∂Ukm<br />

∂Vkm<br />

+ ------------ + ------------ = 0 . (3.21)<br />

∂x<br />

∂y<br />

In equation 3.19, the substitution ζ = z1 ⁄ 2 has been made to use conventional notation. By combining equations 3.20 and 3.21,<br />

it is possible to write an expression <strong>for</strong> the vertical velocity component at an interface k – 1⁄ 2 as<br />

wk – 1⁄ 2<br />

km<br />

∂Uk<br />

∂V<br />

= – ⎧ k ⎫<br />

⎨-------- + -------- ⎬<br />

. (3.22)<br />

∑<br />

⎩ ∂x<br />

∂y<br />

⎭<br />

k = 2<br />

This expression can be evaluated <strong>for</strong> w3⁄ and substituted into equation 3.19 to yield this expression <strong>for</strong> the water surface elevation:<br />

2<br />

km<br />

∂ζ<br />

∂U<br />

-----<br />

k ∂V<br />

+ ⎧ k ⎫<br />

∂t<br />

⎨-------- + -------- ⎬<br />

= 0 . (3.23)<br />

∑<br />

⎩ ∂x<br />

∂y<br />

⎭<br />

k = 1<br />

A variation of equation 3.23 is obtained by integrating the continuity equation over the entire depth of flow. This is written<br />

⎛ km ⎞ ⎛ km ⎞<br />

∂ζ<br />

∂<br />

----- ---- ⎜ U ⎟ ∂<br />

+<br />

∂t<br />

∂x⎜∑k+<br />

---- ⎜ V ⎟<br />

⎟ ∂y<br />

∑ k = 0 , (3.24)<br />

⎜ ⎟<br />

⎝ ⎠ ⎝ ⎠<br />

k = 1<br />

k = 1<br />

km<br />

km<br />

where the quantities ∑ Uk and ∑ Vk represent the vertically-integrated components of the volume-transport velocity.<br />

k = 1 k = 1<br />

Equation 3.24 is the actual <strong>for</strong>m of the continuity equation that is used in the model in determining the water surface elevation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!