28.02.2013 Views

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

64 A <strong>Semi</strong>-<strong>Implicit</strong>, <strong>Three</strong>-<strong>Dimensional</strong> <strong>Model</strong> <strong>for</strong> <strong>Estuarine</strong> Circulation<br />

For a bottom layer, the expression using 3.34 can be shown to be<br />

1<br />

----ρ0<br />

hkmp ∂ km<br />

-------------------- +<br />

∂x<br />

pkm + 1⁄ 2 ----------------- zkm 1 ∂ + ⁄ 2 -------------------<br />

ρ 0<br />

∂x<br />

z<br />

km – 1⁄ 2<br />

∫<br />

z<br />

km – 1⁄ 2<br />

∫<br />

hkm -------ρ0<br />

p ∂ km hkm ----------- --------<br />

∂x<br />

ρ0 gρkm ------------<br />

2<br />

h ∂ km g<br />

– ----------- --------------<br />

∂x<br />

ρ0hkm h ∂ km<br />

= + ----------- ( ρ – ρ<br />

∂x<br />

km)dz′dz<br />

.<br />

(3.37)<br />

The two double integral terms in equations 3.36 and 3.37, containing the three-dimensional density ρ, are zero if the density is<br />

assumed to be uni<strong>for</strong>m vertically across the surface and bottom layers. An approximation is introduced if these terms are neglected<br />

when the vertical density varies continuously within the surface and bottom layers. The error from the approximation is small if<br />

the surface and bottom layer heights are small enough to avoid a large change in density across the layers. If the near-surface and<br />

bottom waters of an estuary are vertically mixed by surface wind and bottom friction, respectively, the error of the approximation<br />

is eliminated. These terms are neglected here, as is customary. In summary, the x-momentum pressure gradient term <strong>for</strong> the surface,<br />

middle, and bottom layers is approximated by the following expressions:<br />

Surface layer,<br />

Middle layers,<br />

Bottom layer,<br />

1<br />

---ρ0<br />

1<br />

---ρ0<br />

1<br />

---ρ0<br />

ζ<br />

∫<br />

z3 ⁄ 2<br />

∂p<br />

∂x<br />

z<br />

k – 1⁄ 2<br />

∫<br />

dz<br />

z<br />

km + 1⁄ 2<br />

h1 ∂p gρ<br />

----- 1 1<br />

-------ρ0<br />

∂x<br />

2<br />

ζ ∂<br />

= ⎛ + ----- ⎞ ;<br />

⎝ ∂x⎠<br />

(3.38)<br />

∂p<br />

hk ----- dz<br />

-----<br />

∂x<br />

ρ0 p ∂ k<br />

= ------- k = 2, 3, …, km – 1 ; (3.39)<br />

∂x<br />

z<br />

k + 1⁄ 2<br />

z<br />

km – 1⁄ 2<br />

∫<br />

∂p<br />

∂x<br />

z<br />

km + 1⁄ 2<br />

For the special case of a single layer representing the entire depth of flow, the result is<br />

1<br />

---ρ0<br />

ζ<br />

∫<br />

z3⁄ 2<br />

dz<br />

∂p<br />

∂x<br />

dz<br />

hkm ∂p<br />

gρ--------<br />

km km<br />

---------------------ρ0 ∂x<br />

2<br />

h ∂ km<br />

= ⎛ – ----------- ⎞ .<br />

(3.40)<br />

⎝ ∂x<br />

⎠<br />

z<br />

h1 ∂p gρ<br />

----- 1 1<br />

-------ρ0<br />

∂x<br />

2<br />

ζ ∂ gρ1 ----- --------<br />

∂x<br />

2<br />

z3 2<br />

⁄ ∂<br />

= ⎛ + + ------- ⎞ , (3.41)<br />

⎝ ∂x<br />

⎠<br />

where z 3 2<br />

⁄ represents the location of the bottom. Similar expressions are available <strong>for</strong> the pressure gradient term in the ymomentum<br />

equation.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!