28.02.2013 Views

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

A Semi-Implicit, Three-Dimensional Model for Estuarine ... - USGS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3. Layer Averaging the Governing Equations 65<br />

The average pressure in any layer can be related to the average pressure in the layer above through the hydrostatic pressure<br />

equation, which is approximated by<br />

pk = pk 1 + ⁄ – ⁄ .<br />

– gρk – 1 h<br />

2 k 1<br />

2<br />

Here hk – 1⁄ is the average of the heights <strong>for</strong> layers k - 1 and k and represents the vertical distance between the centers of the two<br />

2<br />

layers. By differentiating this equation with respect to x and y, the pressure gradients <strong>for</strong> one layer can be determined from the layer<br />

above. For the x-direction pressure gradient, the result is<br />

∂pk ∂pk<br />

– 1<br />

= +<br />

∂x<br />

∂x<br />

∂<br />

-------------- g hk – 1⁄ ρ<br />

2 k – 1⁄ 2<br />

------------------------------<br />

∂x<br />

∂p<br />

∂ρ<br />

k – 1<br />

k – 1⁄ 2<br />

= -------------- + gh<br />

∂x<br />

k – 1⁄ +<br />

2 ∂x<br />

---------------- gρk – 1⁄ 2<br />

∂hk<br />

– 1⁄ 2 ----------------<br />

∂x<br />

∂p<br />

gh<br />

k – 1 k – 1<br />

-------------- ---------------<br />

∂x<br />

2<br />

ρ ∂ k – 1 ghk --------------- -------<br />

∂x<br />

2<br />

ρ ∂ k gρk – 1<br />

------- ---------------<br />

∂x<br />

2<br />

h ∂ k – 1 gρk -------------- --------<br />

∂x<br />

2<br />

h ∂ k<br />

= + + + + -------<br />

∂x<br />

. (3.42)<br />

In the surface layer, the x pressure gradient is approximated by<br />

∂p1 ∂x<br />

gρ1 --------<br />

2<br />

ζ ∂ gh1 ----- --------<br />

∂x<br />

2<br />

ρ ∂ 1<br />

= + -------- . (3.43)<br />

∂x<br />

Successively substituting equations 3.43 and 3.42 into equations 3.38 to 3.40, a general <strong>for</strong>mula <strong>for</strong> the x pressure gradient term<br />

can be seen by induction to be<br />

1<br />

---ρ0<br />

z<br />

k – 1⁄ 2<br />

∫<br />

∂p<br />

hk ∂ζ<br />

gh1 ----- dz<br />

----- gρ ----- --------<br />

∂x<br />

ρ 1<br />

0 ∂x<br />

2<br />

ρ ∂ 1 ghm – 1<br />

-------- ----------------<br />

∂x<br />

2<br />

ρ ∂ m – 1 ghm ---------------- ---------<br />

∂x<br />

2<br />

ρ k<br />

∂ m<br />

= + + ⎛ + --------- ⎞<br />

(3.44)<br />

∑ ⎝ ∂x<br />

⎠<br />

m = 2<br />

z<br />

k + 1⁄ 2<br />

where the summation is omitted <strong>for</strong> k = 1. The corresponding <strong>for</strong>mula <strong>for</strong> the y pressure gradient term is<br />

1<br />

---ρ0<br />

z<br />

k – 1⁄ 2<br />

∫<br />

∂p<br />

----- dz<br />

∂y<br />

hk ∂ζ<br />

gh1 ----- gρ -----------ρ 1<br />

0 ∂y<br />

2<br />

ρ ∂ 1 ghm – 1<br />

-------- ----------------<br />

∂y<br />

2<br />

ρ ∂ m – 1 ghm ---------------- ---------<br />

∂y<br />

2<br />

ρ =<br />

k<br />

∂ m<br />

+ + ⎛ + --------- ⎞<br />

∑ ⎝ ∂y<br />

⎠<br />

m = 2<br />

. (3.45)<br />

z<br />

k + 1⁄ 2<br />

Now consider the integration of the stress terms in equations 3.2 and 3.3 over a layer. After integration and application of<br />

equations 3.9 and 3.11 to the x-component terms, the result is<br />

1<br />

---ρ0<br />

z<br />

k – 1⁄ 2<br />

∫<br />

∂τxx<br />

1 ∂τxy<br />

1 ∂τxz<br />

--------- dz<br />

+ ----- --------- dz<br />

+ ----- --------- dz<br />

=<br />

∂x<br />

ρ0 ∂x<br />

ρ0 ∂x<br />

z<br />

k + 1⁄ 2<br />

z<br />

k – 1⁄ 2<br />

∫z<br />

k + 1⁄ 2<br />

z<br />

k – 1⁄ 2<br />

∫z<br />

k + 1⁄ 2<br />

1 ∂(<br />

hτxx) ∂(<br />

hτ-----<br />

k xy)<br />

∂z<br />

1<br />

⎛<br />

k<br />

k – ⁄ 2<br />

-------------------- + -------------------- + – ( τ<br />

ρ0 ∂x<br />

∂y<br />

xx)<br />

--------------- 1 – τ<br />

⎝<br />

k – ⁄ 2 ∂x<br />

xy<br />

( ) 1 k – ⁄ 2<br />

∂zk<br />

+ 1⁄ 2<br />

– – ( τxx) --------------- – τ<br />

k + 1⁄ 2 ∂x<br />

xy<br />

( )<br />

k + 1⁄ 2<br />

∂z<br />

1 k – ⁄ 2 --------------- + τ<br />

∂y<br />

xz<br />

( ) 1 k – ⁄ 2<br />

∂zk<br />

+ 1⁄ 2 --------------- + τ<br />

∂y<br />

xz<br />

( )<br />

k + 1⁄ 2<br />

⎞<br />

⎠<br />

. (3.46)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!