22.06.2013 Views

a la physique de l'information - Lisa - Université d'Angers

a la physique de l'information - Lisa - Université d'Angers

a la physique de l'information - Lisa - Université d'Angers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

probability of error P er<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

M=1<br />

M=2<br />

M=3<br />

M=7<br />

10<br />

0 0.5 1 1.5 2 2.5 3<br />

-8<br />

noise rms amplitu<strong>de</strong> ση feature here is that it is possible to improve the<br />

performance of the nonlinear <strong>de</strong>tector for a single<br />

two-state quantizer. This improvement is obtained<br />

by simply replicating the two-state quantizer and<br />

then by injecting a certain amount of in<strong>de</strong>pen<strong>de</strong>nt<br />

noises in the array of quantizers. At M41,<br />

application of the quantizer noises Z iðtÞ allows the<br />

quantizers to respond differently. For the nonlinear<br />

<strong>de</strong>tector, this trans<strong>la</strong>tes into a possibility of minimizing<br />

Per with a non-zero optimal amount of the<br />

quantizer noises. The benefit from noise is especially<br />

visible in Fig. 4, when the size of the array M<br />

increases. The explicit computation of the asymptotic<br />

behavior in <strong>la</strong>rge arrays is avai<strong>la</strong>ble from<br />

Eq. (15) by consi<strong>de</strong>ring M tending to 1. If the<br />

array size M tends to 1, and if the optimal amount<br />

of noise is ad<strong>de</strong>d in the array, the performance of<br />

the nonlinear <strong>de</strong>tector asymptotically reaches the<br />

overall minimum probability of error Per of<br />

the linear <strong>de</strong>tector. This <strong>la</strong>st statement, concerning<br />

the convergence of the nonlinear <strong>de</strong>tector toward<br />

the linear <strong>de</strong>tector, can be proved explicitly in the<br />

case of Fig. 4. As previously exp<strong>la</strong>ined, when M<br />

tends to 1, the array of noisy quantizers acts like a<br />

<strong>de</strong>terministic single <strong>de</strong>vice with input–output characteristic<br />

gðxÞ ¼E½YjxŠ ¼1 2F Zðy xÞ according<br />

to Eq. (12). In Fig. 4, the quantizer noises Z iðtÞ,<br />

ARTICLE IN PRESS<br />

M=15<br />

M=31<br />

M=63<br />

M=∞<br />

Fig. 4. Probability of <strong>de</strong>tection error Per, as a function of the rms<br />

amplitu<strong>de</strong> sZ of the uniform zero-mean white noises Z iðtÞ<br />

purposely ad<strong>de</strong>d to the quantizer input. The solid lines are the<br />

theoretical Per of the nonlinear <strong>de</strong>tector of Fig. 1b calcu<strong>la</strong>ted<br />

from the algorithm in Fig. 3, for various size M of the array of<br />

two-state quantizer, when the input noise xðtÞ is chosen Gaussian.<br />

The dashed line is the performance of the linear <strong>de</strong>tector of<br />

Fig. 1a given in Eq. (4). The other parameters are sðtÞ ¼A with<br />

A=sx ¼ 1, P0 ¼ 0:5 and N ¼ 100.<br />

D. Rousseau et al. / Signal Processing 86 (2006) 3456–3465 3461<br />

probability of error P er<br />

probability of error P er<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

(A)<br />

0 0.5 1 1.5 2 2.5 3<br />

noise rms amplitu<strong>de</strong> ση (B)<br />

0 0.5 1 1.5 2 2.5 3<br />

noise rms amplitu<strong>de</strong> ση Fig. 5. Influence of the <strong>de</strong>nsity f xðuÞ of the input noise xðtÞ. Panel<br />

A: same as Fig. 4 but the input noise xðtÞ is zero-mean Lap<strong>la</strong>cian,<br />

i.e. xðtÞ is generalized Gaussian with exponent a ¼ 1. Panel B:<br />

same as panel A but the input noise xðtÞ is a zero-mean mixture of<br />

Gaussian with parameters a ¼ 0:8 and b ¼ 4. In both panels<br />

(A,B), the dashed lines stand for the performance of the linear<br />

<strong>de</strong>tector given by Eq. (5).<br />

chosen uniform, linearize the input–output characteristic<br />

gð:Þ of the array.<br />

When the input noise xðtÞ is non-Gaussian, the<br />

linear <strong>de</strong>tector is suboptimal and represents the best<br />

<strong>de</strong>tection when basing the <strong>de</strong>tection on TðxÞ only.<br />

In this case, the nonlinear <strong>de</strong>tector can produce<br />

lower Per as shown in Fig. 5. This is the case when<br />

xðtÞ is non-Gaussian and belongs to the generalized<br />

Gaussian noise family or the mixture of Gaussian<br />

noise family. The generalized Gaussian noise family<br />

is expressed as f xðuÞ ¼f ggðu=sxÞ=sx, using the<br />

standardized <strong>de</strong>nsity<br />

f ggðuÞ ¼A expð jbuj a Þ, (19)<br />

90/197

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!