29.06.2013 Views

a) b - École Polytechnique de Montréal

a) b - École Polytechnique de Montréal

a) b - École Polytechnique de Montréal

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A-1.4. Conclusions<br />

Through a combination of composite droplet and co-continuous blend morphology preparation<br />

methodologies, a continuous shell structure of polystyrene has been situated at the interface of a<br />

co-continuous polyethylene/poly(methyl methacrylate) blend. This multiple percolated,<br />

interfacial tension driven structure results in a dramatic <strong>de</strong>crease in the percolation threshold<br />

volume fraction of the encapsulating PS component. As little as 3% polystyrene is shown to<br />

generate a continuous PS network. The encapsulation effect follows the prediction based on the<br />

spreading coefficient theory. This approach could be used as a route to generate novel cocontinuous<br />

structures and also as a technique to significantly reduce percolation thresholds in<br />

multiphase blends.<br />

A-1.5. References<br />

(1) Favis, B. D., In Polymer Blends: Formulation and Performance, Paul, D. R.; Bucknall, C.<br />

B., Eds. John Wiley & Sons, Inc: New York, 2000; Vol. 1, pp 239-289.<br />

(2). Potschke, P.; Paul, D. R., Journal of Macromolecular Science - Polymer Reviews 2003, 43,<br />

(1), 87-141.<br />

(3) Yuan, Z.; Favis, B. D., Journal of Polymer Science, Part B: Polymer Physics 2006, 44, (4),<br />

711-721.<br />

(4) Yuan, Z.; Favis, B. D., Biomaterials 2004, 25, (11), 2161-2170.<br />

(5) Soares, B. G.; Gubbels, F.; Jerome, R.; Teyssie, P.; Vanlathem, E.; Deltour, R., Polymer<br />

Bulletin (Berlin) 1995, 35, (1-2), 223.<br />

(6) Gubbels, F.; Jerome, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Cal<strong>de</strong>rone, A.; Parente, V.;<br />

Bredas, J. L., Macromolecules 1994, 27, (7), 1972-1974.<br />

(7) Lyngaae-Jorgensen, J.; Utracki, L. A., Polymer 2003, 44, (5), 1661-9.<br />

(8) Zilberman, M.; Siegmann, A.; Narkis, M., Journal of Macromolecular Science - Physics<br />

2000, B39, (3), 333-47.<br />

(9) Narkis, M.; Haba, Y.; Segal, E.; Zilberman, M.; Titelman, G. I.; Siegmann, A., Polymers for<br />

Advanced Technologies 2000, 11, (8-12), 665-673.<br />

(10) Omonov, T. S.; Harrats, C.; Groeninckx, G., Polymer 2005, 46, (26), 12322-12336.<br />

(11) Reignier, J.; Favis, B. D., AIChE Journal 2003, 49, (4), 1014-1023.<br />

(12) Reignier, J.; Favis, B. D.; Heuzey, M.-C., Polymer 2003, 44, (1), 49-59.<br />

(13) Berger, W.; Kammer, H. W.; Kummerlowe, C., Makromol Chem Suppl B 1984, 8, 101.<br />

(14) Van Oene, H. J., Colloid Interface Sci. 1972, 40, 448-467.<br />

(15) Torza, S.; Mason, G., J. Coll. Interface Sci. 1970, 33, (1), 67-83.<br />

(16) Hobbs, S. Y.; Dekkers, M. E. J.; Watkins, V. H., Polymer 1988, 29, (9), 1598-1602.<br />

244

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!