16.11.2013 Views

Book of Abstracts - Geyseco

Book of Abstracts - Geyseco

Book of Abstracts - Geyseco

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FESPB 2010 - XVII Congress <strong>of</strong> the Federation <strong>of</strong> European Societies <strong>of</strong> Plant Biology<br />

P06-022: THE ROLE OF TTL GENES IN ROOT INITIA-<br />

TION AND DEVELOPMENT<br />

Šefrnová, Y. 1 - Hilgert, D.A. 1 - Fischer, L. 1 - Dubrovsky, J.G. 2<br />

Vielle-Calzada, J.-P 3 - Soukup, A. 1<br />

1<br />

Department <strong>of</strong> Plant Experimental Biology, Faculty <strong>of</strong> Science,<br />

Charles University in Prague<br />

2<br />

Departamento de Biología Molecular de Plantas, Instituto de<br />

Biotecnología, Universidad Nacional Autónoma de México<br />

3<br />

Laboratorio Nacional de Genómica para la Biodiversidad and<br />

Departamento de Ingeniería Genética, Centro de Investigación y<br />

de Estudios Avanzados del I<br />

Lateral root initiation and growth are crucial determinants <strong>of</strong><br />

interaction <strong>of</strong> plant with rhizosphere, controlled via complex<br />

network <strong>of</strong> regulatory elements (Péret et al., 2009; Fukaki &<br />

Tasaka, 2009). TTL3 gene (AT2G42580, Tetratricopetide-repeat<br />

Thioredoxin-Like 3) was identified during the forward screening<br />

<strong>of</strong> a collection <strong>of</strong> gene-trap lines aimed to identify new genes<br />

involved in lateral root initiation and subsequent development. In<br />

Arabidopsis TTL genes comprise family <strong>of</strong> four members. TTL<br />

proteins contain repeating TRP motif, which is considered to be<br />

a protein-protein interaction domain shared among numerous<br />

proteins (Schapire et al., 2006) in combination with thioredoxin<br />

fold. TTL1 was described as a novel protein taking part in salinity<br />

and abscisic acid response (Rosado et al., 2006). TTL3 (VIT)<br />

was previously identified as an interaction partner <strong>of</strong> BRL2/VH1<br />

brassinosteroid receptor and appears to play a role in brassiosteroid<br />

and auxin signaling (Ceserani et al., 2009). Transcriptional<br />

fusions <strong>of</strong> Arabidopsis TTL promotors and GUS gene were constructed<br />

and their expression pattern is described under various<br />

conditions. The phenotypic effects <strong>of</strong> TTL mutations in selected<br />

publically available mutants are described with special emphasis<br />

on lateral root initiation and growth.<br />

Ceserani,T., Tr<strong>of</strong>ka,A., Gandotra,N., and Nelson,T. (2009). Plant<br />

J 57, 1000. Fukaki,H. and Tasaka,M. (2009). Plant Mol Biol 69,<br />

437-449.<br />

Péret,B., De Rybel,B., Casimiro,I., Benkova,E., Swarup,R.,<br />

Laplaze,L., Beeckman,T., and Bennett,M.J. (2009). Trends Plant<br />

Sci 14, 399-408.<br />

Rosado,A., Schapire,A.L., Bressan,R.A., Harfouche,A.L.,<br />

Hasegawa,P.M., Valpuesta,V., and Botella,M.A.<br />

(2006). Plant Physiol. 142, 1113-1126.<br />

Schapire,A.L., Valpuesta,V., and Botella,M.A. (2006). Plant Signal<br />

Behav 1, 229-230.<br />

an expanded expression domain <strong>of</strong> PHB now encompassing not<br />

only the central, but also the peripheral stele. This mutant develops<br />

metaxylem in the place <strong>of</strong> protoxylem. In contrast, multiple<br />

mutants in HD-ZIP III genes form protoxylem in the place <strong>of</strong><br />

metaxylem. Hence, the HD-ZIP III transcription factors act together<br />

to determine the xylem cell type. We show that their activity<br />

domain is determined by the movement <strong>of</strong> miR165/6 from the<br />

endodermal cell layer. Therefore, we describe a bi-directional<br />

signaling pathway where stele-produced SHORT-ROOT protein<br />

moves out to the endodermis to activate miR165/6, which then<br />

acts non-cell autonomously to restrict HD-ZIP III transcripts<br />

from the stele perifery, ultimately leading to proper xylem patterning<br />

in the stele.<br />

P06-023: MOBILE MIRNA165/6 TARGET HD-ZIP III IN<br />

THE ROOT STELE PERIFERY FOR PROPER XYLEM<br />

PATTERNING<br />

Carlsbecker, Annelie 1 - Lee, Ji-Young 2 - Roberts, Christina J. 1 -<br />

Dettmer, J. 3 - Lehesranta, S. 3 - Zhou, Jing 2 - Lindgren, O. 4 -<br />

Moreno-Risueno, M.A. 5 - Vaten, A. 3 - Thitamadee, S. 3 - Campilho,<br />

A. 3 - Sebastian, J. 2 - Bowman, J.L. 6 - Helariutta, Ykä 3 - Benfey, P. 5<br />

1<br />

Dept. <strong>of</strong> Physiological Botany, EBC, Uppsala University<br />

2<br />

Boyce Thompson Institute for Plant Research and Graduate<br />

Field <strong>of</strong> Plant Biology, Cornell University<br />

3<br />

Institute <strong>of</strong> Biotechnology/Department <strong>of</strong> Biosciences, University<br />

<strong>of</strong> Helsinki<br />

4<br />

Institute <strong>of</strong> Technology, University <strong>of</strong> Tartu, Estonia<br />

5<br />

Biology Department and IGSP Center for Systems Biology,<br />

Duke University<br />

6<br />

School <strong>of</strong> Biological Sciences, Monash University<br />

A fundamental aspect <strong>of</strong> developmental biology is information<br />

exchange between cells resulting in proper cell identity. In Arabidopsis,<br />

the root xylem pattern is very consistent: radially, xylem<br />

forms in an axis with protoxylem at either end and metaxylem in<br />

the center. How is this pattern determined? We have identified<br />

a mutant, phb-7d, harboring a mutation in the microRNA165/6<br />

(miR165/6) target site <strong>of</strong> the class III homeodomain leucine<br />

zipper (HD-ZIP III) gene PHABULOSA (PHB), which leads to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!