12.07.2015 Views

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ni n t h In t e r n at i o n a l Co n f e r e n c e o n Pe r m a f r o s tTable 1. Snow cover characteristics for the three sites. Except forsnow depth and the snow/substratum interface temperature, theother parameters are average values computed <strong>on</strong> data from manualsnow profiles (N = 8 at n<strong>on</strong>-permafrost site, N = 9 at permafrostsite, N = 6 at glacier site).Parameter N<strong>on</strong>permafrost<strong>Permafrost</strong> Glaciermax snow depth (cm) 180 230 125grain type in bottomlayer of snowpackmaximum grain sizein bottom layer (mm)hand hardness indexin bottom layersnow/substratuminterfacetemperature* (°C)temperature gradientwithin the snowpack(°C/m)density(Mg/m 3 )Effective heatc<strong>on</strong>ductivity (W/mK)5a, 4a 5a, 4a, 3a 4c2.4 1.8 1.71.8 2.2 5.0-0.9 -5.1 -4.8-6.5 -7.4 -2.10.305 0.273 0.3890.131 0.116 0.257* average values computed <strong>on</strong> data recorded by dataloggers(12/29/2006–04/20/2007).often well b<strong>on</strong>ded together. The snow hardness was veryhigh (level 5), higher than in the other sites. The averagesnow/glacier interface temperature was -4.8 °C.The main differences between the three sites can besummarized in the following points:• A very hard bottom layer was present <strong>on</strong> the glacier inrespect to a snow hardness of 2 for the other two sites; theassumpti<strong>on</strong> is that the cold temperature of the glacier surfacetogether with the high density and low gradient might creategood c<strong>on</strong>diti<strong>on</strong>s for the snow crystals to b<strong>on</strong>d well together.• The permafrost and glacier sites presented similarinterface temperatures, close to -5°C, before reachingisothermal c<strong>on</strong>diti<strong>on</strong>s.• The average temperature gradient at the glacier sitewas lower than in the other two sites. The possible reas<strong>on</strong> isthat the air temperature was higher, as this site is southwestexposed, resulting then in a lower temperature gradient.In all the sites, the interface temperature remainedc<strong>on</strong>stant around a certain value (n<strong>on</strong>-permafrost soil -0.9°C,permafrost -5.1°C, glacier -4.8°C) without great oscillati<strong>on</strong>swhen the snow cover was deep enough to insulate thesubstrata.might generate appreciable differences in the snow covercharacteristics.Our results shows that the main differences in the evoluti<strong>on</strong>of the snow cover <strong>on</strong> permafrost, n<strong>on</strong>-permafrost, and glaciersubstrata are related to hand hardness in the bottom layer(higher <strong>on</strong> glacier), snow/substrata interface temperature(higher <strong>on</strong> n<strong>on</strong>-permafrost soil), and temperature gradient(lower <strong>on</strong> glacier).Moreover, an important outcome of this work is that thetemperature at the snow/substrata interface remains c<strong>on</strong>stantaround certain values, without oscillating in relati<strong>on</strong> toair temperature, when enough snow covers the substrata,showing the important insulating effect of the snow.AcknowledgmentsFot the technical support we thank M<strong>on</strong>terosaSki, RobertoCilenti, Corpo Guide Alpine di Alagna Valsesia, Regi<strong>on</strong>eAut<strong>on</strong>oma Valle d’Aosta-Ufficio Neve e Valanghe, HervèJacc<strong>on</strong>d, Emil Squinobal, and Antoine Brulport.ReferencesEdwards, A.C., Scalenghe, R. & Freppaz, M. 2007. Changesin the seas<strong>on</strong>al snow cover of alpine regi<strong>on</strong>s andits effect <strong>on</strong> soil processes: A review. Quaternary<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> 162-163: 172-181.Haeberli, W. 1973. Die Basis-Temperatur der winterlichenSchneedecke als morfologischer Indikator fuer dieVerbreitung v<strong>on</strong> <strong>Permafrost</strong> in den Alpen. Zeitschriftfuer Gletscherkunde und Glazialgeologie 9: 221–227.Hoelzle, M. 1992. <strong>Permafrost</strong> occurrence from BTSmeasurements and climatic parameters in the EasternSwiss Alps. <strong>Permafrost</strong> and Periglacial Processes 3:143-147.Keller, F. & Gubler, H. 1993. Interacti<strong>on</strong> between snow coverand high mountain permafrost; Murtèl/Corvatsch,Swiss Alps. Proceedings of the Sixth <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Permafrost</strong>, Beijing, China, 5-9 July1993. Proceedings. Guangzhou, China: South ChinaUniversity of Technology Press, 1: 332-337.Kuhn, M., Haslhofer, J., Nickus, U. & Schellander, H. 1998.Seas<strong>on</strong>al development of i<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> in a highalpine snow pack. Atmospheric Envir<strong>on</strong>ment 32(23):4041-4051.Phillips, M. & Schweizer, J. 2007. Effect of mountainpermafrost <strong>on</strong> snowpack stability. Cold Regi<strong>on</strong>sScience and Technology 47: 43-49.C<strong>on</strong>clusi<strong>on</strong>sThe main purpose of this work was to analyze the evoluti<strong>on</strong>of the snow cover <strong>on</strong> different substrata to understand if they80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!