12.07.2015 Views

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ni n t h In t e r n at i o n a l Co n f e r e n c e o n Pe r m a f r o s tApproachFor idealized simulati<strong>on</strong>s, the annual variability ofradiati<strong>on</strong> (or air temperature) can be approximated by asinusoidal variati<strong>on</strong>, as indicated in Figure 1b. Similarly,the evoluti<strong>on</strong> of the snow cover can be approximated by ac<strong>on</strong>tinuous linear increase in early winter and a sharp lineardecrease in early summer (Fig. 1c). For idealized modelingof the impact of atmospheric forcing <strong>on</strong> the evoluti<strong>on</strong> ofmountain permafrost, <strong>on</strong>ly four atmospheric parametersneed to be varied:1. accumulated summer air temperature (e.g.,approximated by the amplitude of the sinusoidal curve);2. air temperature at the beginning of the permanentsnow cover (autumn);3. time of the buildup of the permanent snow cover; and4. time of vanishing of the permanent snow cover.The rati<strong>on</strong>ale for this approach can be further illustratedby analyzing multiyear time series of air temperature andsnow cover durati<strong>on</strong> (Fig. 2), as well as comparing them tosubsurface temperatures. This was d<strong>on</strong>e in detail by Hoelzle& Gruber (2008) for two sites in the Swiss Alps (includingSchilthorn), indicating that snow cover durati<strong>on</strong> and airtemperature are indeed the dominant forcing variables forpermafrost temperatures and active layer thickness.Our approach focuses <strong>on</strong> determining subsurfacetemperatures, water, and ice c<strong>on</strong>tent evoluti<strong>on</strong> with a<strong>on</strong>e-dimensi<strong>on</strong>al coupled heat and mass transfer modelsimulating mass and energy balance of the soil-snowatmospheresystem (COUP-model, Janss<strong>on</strong> & Karlberg2001). This model has been successfully applied to simulatewater and energy at Schilthorn (Scherler et al. submitted). Asa first step to using downscaled RCM scenario time series,we use idealized atmospheric forcing time series to analyzethe possible impacts of increasing summer air temperatures,for example, or a shift in the snow cover durati<strong>on</strong> <strong>on</strong> thepermafrost temperatures. In a next step, these characteristicswill be extracted from simulated RCM scenario timeseries for l<strong>on</strong>ger time scales. For the idealized simulati<strong>on</strong>s,combinati<strong>on</strong>s of the four atmospheric parameters listedabove will be used.ReferencesAnisimov, O.A. & Nels<strong>on</strong>, F.E. 1997. <strong>Permafrost</strong> z<strong>on</strong>ati<strong>on</strong>and climate change in the Northern Hemisphere:results from transient general circulati<strong>on</strong> models.Climatic Change 35: 241-258.Frei, C. et al. 2003. Daily precipitati<strong>on</strong> statistics in Regi<strong>on</strong>alClimate Models: Evaluti<strong>on</strong> and intercomparis<strong>on</strong> forthe European Alps. J. Geophys. Res. 108(D3): ACL9-1– 9-19.Hauck, C. 2002. Frozen ground m<strong>on</strong>itoring using DCresistivity tomography. Geophysical <strong>Research</strong> Letters29(21): 2016, doi:10.1029/2002GL014995.Hilbich, C. et al. 2008. M<strong>on</strong>itoring mountain permafrostevoluti<strong>on</strong> using electrical resistivity tomography:A 7-year study of seas<strong>on</strong>al, annual, and l<strong>on</strong>g-termvariati<strong>on</strong>s at Schilthorn, Swiss Alps, J. Geophys. Res.113: F01S90, doi:10.1029/2007JF000799.Hoelzle, M. & Gruber, S. 2008. Borehole and ground surfacetemperatures and their relati<strong>on</strong> to meteorologicalc<strong>on</strong>diti<strong>on</strong>s in the Swiss Alps. Proceedings of the <str<strong>on</strong>g>Ninth</str<strong>on</strong>g><str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Permafrost</strong>, Fairbanks,Alaska.Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) 2007.Climate Change 2007: The Physical Science Basis.Summary for policy makers, 18 pp., http://www.ipcc.ch/.Janss<strong>on</strong>, P.-E. & Karlberg, L. 2001. Coupled Heat and MassTransfer Model for Soil-Plant-Atmosphere Systems.Stockholm: Royal Inst. of Technology, Dept. of Civiland Envir<strong>on</strong>mental Engineering, 321 pp.Noetzli, J., Gruber, S., Kohl, T., Salzmann, N. & Haeberli, W.2007. Three-dimensi<strong>on</strong>al distributi<strong>on</strong> and evoluti<strong>on</strong> ofpermafrost temperatures in idealized high-mountaintopography, J. Geophys. Res. 112 (F2): F02S13,doi:10.1029/2006JF000545.Salzmann, N. et al. 2007a. The applicati<strong>on</strong> of Regi<strong>on</strong>alClimate Model output for the simulati<strong>on</strong> of highmountainpermafrost scenarios. Global and PlanetaryChange 56 (1–2): 188-202.Salzmann, N. et al. 2007b. RCM-based ground-surfacetemperature scenarios for complex high-mountaintopography. J. Geophys. Res. 112: F02S12,doi:10.1029/2006JF000527.Scherler, M. et al. Submitted. Investigati<strong>on</strong> of meltwaterinfiltrati<strong>on</strong> into the active layer of an alpine permafrostsite <strong>on</strong> Schilthorn, Switzerland. Water Resources<strong>Research</strong>.Stendel, M. et al. 2007. Using dynamical downscaling toclose the gap between global change scenarios andlocal permafrost dynamics. Global and PlanetaryChange 56(1–2): 203-214.Figure 2. Air temperature and snow height at Schilthorn, SwissAlps, between autumn 1999 and 2006 (data courtesy of M. Hoelzleand PERMOS).96

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!