12.07.2015 Views

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ni n t h In t e r n at i o n a l Co n f e r e n c e o n Pe r m a f r o s tMaximum Annual Freeze Depth Departure (m)0.50.40.30.20.10-0.1-0.2-0.3-0.4-0.51930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000YearFigure 2. Mean 1930–1990 time series, based <strong>on</strong> a total of 211stati<strong>on</strong>s, of the maximum annual freeze depth departures. Includedalso is the linear trend (-4.4 cm decade −1 ). The number of stati<strong>on</strong>sc<strong>on</strong>tributing to each year’s mean value is indicated by the greybars.Maximum Annual Freeze Depth Departure (m)0.50.40.30.20.10-0.1-0.2-0.3-0.4-0.51930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000YearFigure 3. Mean 1930–2000 time series, based <strong>on</strong> a total of 387stati<strong>on</strong>s, of the maximum annual freeze depth departures. Includedalso is the linear trend (-4.0 cm decade −1 ). The number of stati<strong>on</strong>sc<strong>on</strong>tributing to each year’s mean value is indicated by the greybars.our kriging efforts, we are now able to provide much morerobust trend estimates. As shown in Figure 3, up to 320 (ofthe total 387) stati<strong>on</strong>s now c<strong>on</strong>tribute to each year’s meanfreeze depth departure. For the same period as shown inFigure 2, 1930–1990, the trend indicates a decrease of <strong>on</strong>ly17 cm in seas<strong>on</strong>al freeze depth (not shown). It appears as ifthe early period prior to 1956 indeed biased our l<strong>on</strong>g-termtrend estimati<strong>on</strong> in our earlier work. However, the 1956–1990 trend, based <strong>on</strong> these more complete data, shows anoverall decrease of 48 cm. This change is 30% greater thanpreviously reported in Frauenfeld et al. (2004).The overall change for the 71-year period from 1930–2000is a statistically significant (95%-level) -4.0 cm decade −1 , oran overall decrease of 29 cm (Fig. 3). Interestingly, this timeseries also indicates some patterns of interdecadal variability(and we need to exercise cauti<strong>on</strong>, therefore, in applyinglinear regressi<strong>on</strong>). Freeze depths actually increased slightlyuntil ~1970, followed by a sharp decrease until ~1990. From3202802402001601208040032028024020016012080400Stati<strong>on</strong> CountStati<strong>on</strong> Count1990 <strong>on</strong>, freeze depths may actually be increasing again. Inour <strong>on</strong>going efforts, we are trying to establish the degreeto which these interdecadal patterns are real or potentiallycaused by changes in the amount and quality of availabledata.AcknowledgmentsThis work was funded by the U.S. Nati<strong>on</strong>al ScienceFoundati<strong>on</strong> under grants ARC-0612431, OPP-0229766, andOPP-0352910, and the <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Arctic <strong>Research</strong> Center,University of Alaska Fairbanks, under the auspices of theNSF cooperative agreement number OPP-0327664.ReferencesFrauenfeld O.W., Zhang, T., Barry, R.G. & Gilichinsky. D.2004. Interdecadal changes in seas<strong>on</strong>al freeze andthaw depths in Russia. J. Geophys. Res. 109: D05101,doi:10.1029/2003JD004245.Gilichinsky, D.A. et al. 1998. A century of temperatureobservati<strong>on</strong>s of soil climate: Methods of analysisand l<strong>on</strong>g-term trends. In: A.G. Lewkowicz & M.Allard (eds.), Proceedings of the 7th <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Permafrost</strong>, Ste.-Foy, Canada: Centred’Études Nordiques, Université Laval, 313-317.Hinzman, L.D., Kane, D.L, Gieck, R.E. & Everett, K.R.1991. Hydrologic and thermal properties of the activelayer in the Alaskan Arctic. Cold Reg. Sci. Technol.19: 95-110.Kane, D.L., Hinzman, L.D. & Zarling, J.P. 2003. Thermalresp<strong>on</strong>se of the active layer to climatic warming in apermafrost envir<strong>on</strong>ment. Cold Regi<strong>on</strong>s Sci. Technol.19: 111-122.Nels<strong>on</strong>, F.E. 2003. (Un)frozen in time. Science 299: 1673-1675.Osterkamp T.E., Viereck, L., Shur, Y., Jorgens<strong>on</strong>, M.T.Racine, C., Falc<strong>on</strong>, L., Doyle, A. & Bo<strong>on</strong>e, R.D.2000. Observati<strong>on</strong>s of Thermokarst and its Impact<strong>on</strong> Boreal Forests in Alaska, U.S.A. Arct. Antart. Alp.Res. 32: 303-315.State Committee of the U.S.S.R. for Hydrometeorologyand Envir<strong>on</strong>mental C<strong>on</strong>trol. 1985. Instructi<strong>on</strong>sfor Meteorological Stati<strong>on</strong>s and Posts Vol. 3, Part1 in Meteorological Observati<strong>on</strong>s at Stati<strong>on</strong>s,Gidrometeoizdat, Leningrad.Woo, M.-K. 1992. Impacts of Climatic Variability andChange <strong>on</strong> Canadian Wetlands. Can. Water Resour.J. 17: 63-69.Zhang, T., Barry, R.G., Gilichinsky, D., Bykhovets, S.S.,Sorokovikov, V.A. & Ye. J. 2001. An amplified signalof climatic change in soil temperatures during the lastcentury at Irkutsk, Russia. Clim. Change 49: 41-76.76

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!