12.07.2015 Views

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ni n t h In t e r n at i o n a l Co n f e r e n c e o n Pe r m a f r o s t3D Thermal Modeling of <strong>Permafrost</strong>Extensi<strong>on</strong>s from Solar Radiati<strong>on</strong> Evoluti<strong>on</strong>(Last 120,000 Years)In a sec<strong>on</strong>d step (refer to Teles & Mouche 2006), focuswas put <strong>on</strong> the modeling of transient evoluti<strong>on</strong> of permafrostextensi<strong>on</strong>. Former 3D geometrical features were retainedfor a thermal modeling approach and identical 100,000-yeartime period. A purely c<strong>on</strong>ductive model was c<strong>on</strong>sideredwith actual geological formati<strong>on</strong> thermal properties,imposed bottom geothermal flux, and transient imposedsurface temperature. The latter followed the normalizedvariati<strong>on</strong> in solar radiati<strong>on</strong> over the time period accordingto Berger (1978). The modeling of permafrost extensi<strong>on</strong>was attempted c<strong>on</strong>sidering the following refined points: (1)Imposed surface temperature was made dependant fromthe actual altitude and incident solar radiati<strong>on</strong> (Šafanda1999). (2) Ground level solar radiati<strong>on</strong> was c<strong>on</strong>sidereddependant <strong>on</strong> incident solar radiati<strong>on</strong>, topographic slope andsurface orientati<strong>on</strong> (Senkova & R<strong>on</strong>tu 2003). (3) Imposedsurface temperature was affected a positive correcti<strong>on</strong> whencorresp<strong>on</strong>ding to a river mesh to account for heat exchangeresulting in the reducti<strong>on</strong> of permafrost development underrivers (the coefficient was chosen c<strong>on</strong>stant and its valueassessed based <strong>on</strong> model sensitivity analysis). Simulati<strong>on</strong>results were finally compared to a vertical rec<strong>on</strong>structi<strong>on</strong> of0°C isotherm for a deep borehole locati<strong>on</strong>. These referencevalues corresp<strong>on</strong>d to a best expert view resulting from insitu analysis, naturalistic c<strong>on</strong>siderati<strong>on</strong>s, as well as 1Dvertical thermal modeling including phase change effects(cf. Courbouleix et al. 1998).This study remains preliminary in the sense that the 3Dmodel was not further complexified to account for phasechangephenomena and heat advecti<strong>on</strong> due to water flow.This is attempted in the third modeling phase. Nevertheless,results show that qualitative evoluti<strong>on</strong> of the 0°C isothermcould be well simulated, although quantitative fit requiresbetter c<strong>on</strong>straints <strong>on</strong> the solar radiati<strong>on</strong> forcing history. Thisis a critical point, since literature shows that uncertaintiesin solar radiati<strong>on</strong> histories resulting from existing scenariosremain large, whereas the sensitivity of the thermal model tothis input data is very large. For two models c<strong>on</strong>sidered in thestudy <strong>on</strong>ly differing roughly by a factor of two, permafrostextensi<strong>on</strong>s were very different. C<strong>on</strong>sequently, care should beput in the future in increasing the robustness of this forcingterm.including topographic variability (valleys vs. hills); and(3) addressing the issue of spatial and temporal upscaling(e.g., periodic thermal stress, daily, yearly, cycles) to achieveregi<strong>on</strong>al modeling for a 120,000-year time period.These efforts will serve to organize the various mechanismsinto a hierarchy, and finally improve the physical andnumerical modeling of the impact of glacial cycles <strong>on</strong> thehydrogeology at the MHM site over geological time scales.ReferencesAndra. 2005. Dossier 2005. Argile, Référentiel du site deMeuse / Haute-Marne, Tome 3. Document Andra n°C.RP.ADS.04.0022.B.Andra. 2004. Site Meuse/Haute-Marne, Géothermie.Inventaire des nouvelles d<strong>on</strong>nées. Note TechniqueAndra n° C.NT.ASMG.04.0001.Berger, A. 1978. L<strong>on</strong>g-term variati<strong>on</strong>s of daily insolati<strong>on</strong>and Quaternary climatic changes. Journal of theAtmospheric Sciences 35(12): 2362-2367.Brulhet, J. 2004. L’évoluti<strong>on</strong> géodynamique (tect<strong>on</strong>iqueet climatique) et s<strong>on</strong> impact sur l’hydrogéologieet l’envir<strong>on</strong>nement de surface. Site MHM. NoteTechnique Andra n° C.NT.ASMG.03.106.B: 84 pp.Courbouleix, S., Gros, Y., Clet, M., Coutard, J.P., Lautridou,J.P., Van Vliet-Lanoe, B., Dupas, A. & Cames-Pintaux,A.M. 1998. Simulati<strong>on</strong> de la prof<strong>on</strong>deur du pergélisolau cours du dernier cycle climatique. Utilisati<strong>on</strong> deséchantill<strong>on</strong>s du s<strong>on</strong>dage EST106, Rapport Andra n°D.RP.0ANT.98.011.Šafanda, J, 1999. Groundwater surface temperature asa functi<strong>on</strong> of slope angle and slope orientati<strong>on</strong>.Tect<strong>on</strong>ophysics 306: 367-375.Senkova, A.V. & R<strong>on</strong>tu, L. 2003. A Study of the Radiati<strong>on</strong>Parametrizati<strong>on</strong> for Sloping Surfaces. St. Petersburg:Baltic HIRLAM Worshop, 79-82.Teles, V. & Mouche, E. 2005. Analyse de sensibilité de laprésence d’un pergélisol c<strong>on</strong>tinu et disc<strong>on</strong>tinu surl’hydrogéologie du secteur, Site MHM. RapportAndra n° C.RP.12CEA.05.001.Teles, V. & Mouche, E. 2006. Site MHM, Modélisati<strong>on</strong>tridimensi<strong>on</strong>nelle de la distributi<strong>on</strong> du pergélisolau cours d’un cycle climatique. Rapport Andra n°C.RP.12CEA.06.001.Van Vliet-Lanoë, B. 2004. Modèle c<strong>on</strong>ceptuel du pergélisol,Site MHM. Rapport Andra n° C.RP.0UST.04.002.Coupled Thermo-Hydrological Modeling ofSmall-Scale UnitsOngoing efforts c<strong>on</strong>sist in (1) developing a coupledTH (Thermo-Hydro) numerical model within our Cast3Mcode including thermal c<strong>on</strong>ducti<strong>on</strong>, c<strong>on</strong>vecti<strong>on</strong>, and phasechange; (2) answering the issue of the level of heat fluxactually transmitted to the underground while c<strong>on</strong>sideringvarious surface- and subsurface-specific units leading toheat exchange like water bodies (river, lake, aquifer), or312

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!