12.07.2015 Views

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

Ninth International Conference on Permafrost ... - IARC Research

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ni n t h In t e r n at i o n a l Co n f e r e n c e o n Pe r m a f r o s tC<strong>on</strong>clusi<strong>on</strong>sThe work shows that the model is capable of reproducingthe evoluti<strong>on</strong> of the snow cover and the temperatures in theactive layer of the rock glacier. Snow evoluti<strong>on</strong>, together withthe thermal and hydraulic parameters (DallAmico et al. submitted),is a crucial process to take into c<strong>on</strong>siderati<strong>on</strong> whenthe thermal regime of an active layer is to be modeled. A properrepresentati<strong>on</strong> of the snow evoluti<strong>on</strong> can provide the righttime window of direct soil exposure to solar radiati<strong>on</strong> and, inturn, a reliable quantificati<strong>on</strong> of the soil energy fluxes. C<strong>on</strong>versely,a poor representati<strong>on</strong> may lead to significant errorsthat propagate and increase the deeper we go in the ground.Figure 1. Simulated vs. measured snow depth and energy fluxinput to the ground in the Murtèl rock glacier.Figure 2. The error in temperature profile depends <strong>on</strong> snow modelingand becomes bigger the deeper in the ground. “Proper” and “Poor”refer to real measures and delayed modeling, respectivelyAs can be seen in Figure 1, the model proves to simulatewell both the snow depth and the time when snow iscompletely ablated. The heat flux reaching the soil surfaceclearly depends <strong>on</strong> snow presence. When soil is snow free,the flux is of the order of 50 W/m 2 , but it can drop by anorder of magnitude or more when snow is present.A delay (anticipati<strong>on</strong>) in the estimati<strong>on</strong> of the snow covercomplete ablati<strong>on</strong> date may lead to an underestimati<strong>on</strong>(overestimati<strong>on</strong>) of the ground surface temperature and ofthe temperature profile of the layers below. For example,in Figure 2 the temperature behavior at the soil surface andat 55 cm depth during the snow melting period is reported,c<strong>on</strong>sidering a “proper” snow simulati<strong>on</strong> (full grey line) anda “poor” delayed snow simulati<strong>on</strong> (dotted grey line). Thesurface temperature increases as the snow is melted, andthe delay between the two scenarios is disappear after fewdays. At 55 cm depth, instead, the delay in the temperatureevoluti<strong>on</strong> is still visible after <strong>on</strong>e m<strong>on</strong>th, indicating that theerror in snow model will propagate and increase as we godeeper in the soil.ReferencesBertoldi, G., Rig<strong>on</strong>, R. & Over, T.M. 2006. Impact ofwatershed geomorphic characteristics <strong>on</strong> the energyand water budgets. J. Hydrometeorology 7: 389-403.DallAmico, M., Endrizzi, S., Rig<strong>on</strong>, R. & Gruber, S.Submitted. Modelling the thermal regime of a rockglacier active layer using GEOtop. Proceedings ofthe <str<strong>on</strong>g>Ninth</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Permafrost</strong>,Fairbanks, Alaska, June 29–July 3, 2008.Endrizzi, S. 2007. Snow cover modeling at local and distributedscale over complex terrain. Ph.D. dissertati<strong>on</strong>.Dept. of Civil and Envir<strong>on</strong>mental Engineering, Universityof Trento, Italy.Endrizzi, S., Rig<strong>on</strong>, R. & DallAmico, M. 2008. A soil freeze/thaw model through the soil water characteristic curve.Extended Abstracts, <str<strong>on</strong>g>Ninth</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong><strong>Permafrost</strong>, Fairbanks, Alaska, June 29–July 3, 2008.Hoelzle, M., Wegman, M. & Krummenacher, B. 1999.Miniature temperature dataloggers for mapping andm<strong>on</strong>itoring of permafrost in high mountain areas:first experience from the Swiss Alps. <strong>Permafrost</strong> andPeriglacial Processes 10: 113-124Jordan R. 1991 A <strong>on</strong>e-dimensi<strong>on</strong>al temperature model for asnow cover. Technical documentati<strong>on</strong> for SNTHERM89. CRREL, Hanover, NH, USA.Mittaz, C., Hoelzle, M. & Haeberli, W. 2000. First results andinterpretati<strong>on</strong> of energy-flux measurements of Alpinepermafrost. Annals of Glaciology 31: 275-280.Oke, T.R. 1990. Boundary Layer Climates. Routledge.Rig<strong>on</strong>, R., Bertoldi, G. & Over, T.M. 2006. GEOtop: Adistributed hydrological model with coupled waterand energy budgets. J. of Hydromet. 7: 371-388.Sim<strong>on</strong>i, S., Zanotti, F., Bertoldi, G. & Rig<strong>on</strong>, R. 2007.Modelling the probability of occurrence of shallowlandslides and channelized debris flows usingGEOtop-FS. Hydrological. Processes.V<strong>on</strong>der Mühll, D. & Haeberli, W. 1990. Thermal characteristicsof the permafrost within an active rock glacier(Murtèl/Corvatsch, Gris<strong>on</strong>s, Swiss Alps). Journal ofGlaciology 36(123): 151-158.Zanotti F., Endrizzi, S., Bertoldi, G. & Rig<strong>on</strong>, R. 2004. TheGEOTOP snow module. Hydrological. Processes 18:3667-3679. doi:10.1002/hyp.5794.58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!