29.03.2016 Views

Nonlinear Fiber Optics - 4 ed. Agrawal

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6.1. <strong>Nonlinear</strong> Birefringence 181<br />

respectively, and satisfy somewhat simpler equations:<br />

∂A +<br />

∂z + β ∂A +<br />

1<br />

∂t<br />

∂A −<br />

∂z + β ∂A −<br />

1<br />

∂t<br />

+ iβ 2<br />

2<br />

+ iβ 2<br />

2<br />

∂ 2 A +<br />

∂t 2<br />

∂ 2 A −<br />

∂t 2<br />

+ α 2 A + = iΔβ<br />

2 A − + 2iγ (<br />

|A+ | 2 + 2|A − | 2) A + , (6.1.15)<br />

3<br />

(<br />

|A− | 2 + 2|A + | 2) A − , (6.1.16)<br />

+ α 2 A − = iΔβ<br />

2 A + + 2iγ<br />

3<br />

where we assum<strong>ed</strong> that β 1x ≈ β 1y = β 1 for fibers with relatively low birefringence.<br />

Notice that the four-wave-mixing terms appearing in Eqs. (6.1.11) and (6.1.12) are<br />

replac<strong>ed</strong> with a linear coupling term containing Δβ. At the same time, the relative<br />

strength of XPM changes from 2 3<br />

to 2 when circularly polariz<strong>ed</strong> components are us<strong>ed</strong><br />

to describe wave propagation.<br />

6.1.3 Elliptically Birefringent <strong>Fiber</strong>s<br />

The derivation of Eqs. (6.1.11) and (6.1.12) assumes that the fiber is linearly birefringent,<br />

i.e., it has two principal axes along which linearly polariz<strong>ed</strong> light remains linearly<br />

polariz<strong>ed</strong> in the absence of nonlinear effects. Although this is ideally the case for<br />

polarization-maintaining fibers, elliptically birefringent fibers can be made by twisting<br />

a fiber preform during the draw stage [11].<br />

The coupl<strong>ed</strong>-mode equations are modifi<strong>ed</strong> considerably for elliptically birefringent<br />

fibers. This case can be treat<strong>ed</strong> by replacing Eq. (6.1.1) with<br />

E(r,t)= 1 2 (ê xE x + ê y E y )exp(−iω 0 t)+c.c., (6.1.17)<br />

where ê x and ê y are orthonormal polarization eigenvectors relat<strong>ed</strong> to the unit vectors ˆx<br />

and ŷ us<strong>ed</strong> before as [12]<br />

ê x =<br />

ˆx + irŷ<br />

√ ,<br />

1 + r 2<br />

ê y =<br />

r ˆx − iŷ<br />

√<br />

1 + r 2 . (6.1.18)<br />

The parameter r represents the ellipticity introduc<strong>ed</strong> by twisting the preform. It is<br />

common to introduce the ellipticity angle θ as r = tan(θ/2). The cases θ = 0 and π/2<br />

correspond to linearly and circularly birefringent fibers, respectively.<br />

Following a proc<strong>ed</strong>ure similar to that outlin<strong>ed</strong> earlier for linearly birefringent fibers,<br />

the slowly varying amplitudes A x and A y are found to satisfy the following set of<br />

coupl<strong>ed</strong>-mode equations [12]:<br />

∂A x<br />

∂z + β ∂A x<br />

1x<br />

∂t<br />

∂A y<br />

∂z + β ∂A y<br />

1y<br />

∂t<br />

+ iβ 2 ∂ 2 A x<br />

2 ∂t 2 + α 2 A x = iγ[(|A x | 2 + B|A y | 2 )A x +CA ∗ xA 2 ye −2iΔβz ]<br />

+ iγD[A ∗ yA 2 xe iΔβz +(|A y | 2 + 2|A x | 2 )A y e −iΔβz ], (6.1.19)<br />

+ iβ 2 ∂ 2 A y<br />

2 ∂t 2 + α 2 A y = iγ[(|A y | 2 + B|A x | 2 )A y +CA ∗ yA 2 xe 2iΔβz ]<br />

+ iγD[A ∗ xA 2 ye −iΔβz +(|A x | 2 + 2|A y | 2 )A x e iΔβz ], (6.1.20)<br />

where the parameters B, C, and D are relat<strong>ed</strong> to the ellipticity angle θ as<br />

B = 2 + 2sin2 θ<br />

2 + cos 2 θ , C = cos2 θ sinθ cosθ<br />

2 + cos 2 , D =<br />

θ 2 + cos 2 θ . (6.1.21)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!