29.03.2016 Views

Nonlinear Fiber Optics - 4 ed. Agrawal

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

236 Chapter 7. Cross-Phase Modulation<br />

introduce normaliz<strong>ed</strong> variables using<br />

ξ = z/L D , τ =(t − z/v g1 )/T 0 , A j = γ 1 L D u j , (7.3.10)<br />

Eqs. (7.1.15) and (7.1.16) can be written in the form<br />

i ∂u 1<br />

∂ξ − d 1 ∂ 2 u 1<br />

2 ∂τ 2 +(|u 1| 2 + σ|u 2 | 2 )u 1 = 0, (7.3.11)<br />

i ∂u 2<br />

∂ξ + d 2 ∂ 2 u 2<br />

2 ∂τ 2 +(|u 2| 2 + σ|u 1 | 2 )u 2 = 0, (7.3.12)<br />

where d j = |β 2 j /β 20 |, β 20 is a reference value us<strong>ed</strong> to define the dispersion length, and<br />

u 1 is assum<strong>ed</strong> to propagate in the normal-dispersion region. We have also assum<strong>ed</strong><br />

γ 2 ≈ γ 1 . The parameter σ has a value of 2 when all waves are linearly polariz<strong>ed</strong> but<br />

becomes 1, the solution has the following form:<br />

√<br />

σd2 + d 1<br />

u 1 (ξ ,τ) =r<br />

σ 2 − 1 dn(rτ, p)[qdn−2 (rτ, p) ∓ 1]exp(iQ ± 1<br />

ξ ), (7.3.13)<br />

√<br />

d2 + σd 1<br />

u 2 (ξ ,τ) =r<br />

σ 2 − 1<br />

where the propagation constants Q 1 and Q 2 are given by<br />

Q ± 1 =<br />

Q ± 2 =<br />

p 2 sn(rτ, p)cn(rτ, p)<br />

exp(iQ ± 2<br />

ξ ), (7.3.14)<br />

dn(rτ, p)<br />

r2<br />

σ 2 − 1 [σ(d 2 + σd 1 )(1 + q 2 ) ∓ 2q(σd 2 + d 1 )] − r2 d 1<br />

2 (1 ∓ q)2 , (7.3.15)<br />

r2<br />

σ 2 − 1 [(d 2 + σd 1 )(1 + q 2 ) ∓ 2qσ(σd 2 + d 1 )]. (7.3.16)<br />

In these equations, sn, cn, and dn are the standard Jacobi elliptic functions [50] with<br />

the modulus p (0 < p < 1) and the period 2K(p)/r, where K(p) is the complete elliptic<br />

integral of the first kind, q =(1 − p 2 ) 1/2 , and r is an arbitrary scaling constant. Two<br />

families of periodic solutions correspond to the choice of upper and lower signs. For<br />

each family, p can take any value in the range of 0 to 1.<br />

The prec<strong>ed</strong>ing solution exists only for σ > 1. When σ < 1, the following single<br />

family of periodic solutions is found [49]:<br />

√<br />

σd2 + d 1<br />

u 1 (ξ ,τ) =r<br />

1 − σ 2 psn(rτ, p)exp(iQ 1ξ ), (7.3.17)<br />

√<br />

d2 + σd 1<br />

u 2 (ξ ,τ) =r<br />

1 − σ 2 pdn(rτ, p)exp(iQ 2ξ ), (7.3.18)<br />

where the propagation constants Q 1 and Q 2 are given by<br />

Q 1 = − 1 2 r2 d 1 q 2 + r 2 (d 1 + σd 2 )/(1 − σ 2 ), (7.3.19)<br />

Q 2 = 1 2 r2 d 2 (1 + q 2 )+r 2 σ(d 1 + σd 2 )/(1 − σ 2 ). (7.3.20)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!