29.03.2016 Views

Nonlinear Fiber Optics - 4 ed. Agrawal

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

References 221<br />

6.9 Derive the dispersion relation K(Ω) for modulation instability to occur in lowbirefringence<br />

fibers starting from Eqs. (6.1.15) and (6.1.16). Discuss the frequency<br />

range over which the gain exists when β 2 > 0.<br />

6.10 Derive the dispersion relation K(Ω) for modulation instability to occur in highbirefringence<br />

fibers starting from Eqs. (6.1.22) and (6.1.23). Discuss the frequency<br />

range over which the gain exists when β 2 > 0.<br />

6.11 Solve Eqs. (6.5.4) and (6.5.5) numerically by using the split-step Fourier method.<br />

Reproduce the results shown in Figure 6.13. Check the accuracy of Eq. (6.5.8)<br />

for δ = 0.2 and B = 2 3 .<br />

6.12 Verify by direct substitution that the solution given by Eq. (6.5.14) satisfies Eqs.<br />

(6.5.4) and (6.5.5).<br />

6.13 Explain the operation of soliton-dragging logic gates. How would you design a<br />

NOR gate by using such a technique?<br />

6.14 Explain the origin of PMD in optical fibers. Why does PMD lead to pulse broadening.<br />

Do you expect PMD-induc<strong>ed</strong> broadening to occur for solitons?<br />

References<br />

[1] P. D. Maker, R. W. Terhune, and C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).<br />

[2] G. Mayer and F. Gires, Compt. Rend. Acad. Sci. 258, 2039 (1964).<br />

[3] P. D. Maker and R. W. Terhune, Phys. Rev. A 137, A801 (1965).<br />

[4] M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).<br />

[5] A. Owyoung, R. W. Hellwarth, and N. George, Phys. Rev. B 5, 628 (1972).<br />

[6] M. A. Duguay, in Progress in <strong>Optics</strong>, Vol. 14, E. Wolf, Ed. (North-Holland, Amsterdam,<br />

1976), Chap. 4.<br />

[7] R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).<br />

[8] N. G. Phu-Xuan and G. Rivoire, Opt. Acta 25, 233 (1978).<br />

[9] Y. R. Shen, The Principles of <strong>Nonlinear</strong> <strong>Optics</strong> (Wiley, New York, 1984).<br />

[10] R. W. Boyd, <strong>Nonlinear</strong> <strong>Optics</strong>, 2nd <strong>ed</strong>. (Academic Press, San Diego, 2003).<br />

[11] R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).<br />

[12] C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).<br />

[13] R. H. Stolen and A. Ashkin, Appl. Phys. Lett. 22, 294 (1973).<br />

[14] J. M. Dzi<strong>ed</strong>zic, R. H. Stolen, and A. Ashkin, Appl. Opt. 20, 1403 (1981).<br />

[15] J. L. Aryal, J. P. Pocholle, J. Raffy, and M. Papuchon, Opt. Commun. 49, 405 (1984).<br />

[16] K. Kitayama, Y. Kimura, and S. Sakai, Appl. Phys. Lett. 46, 623 (1985).<br />

[17] E. M. Dianov, E. A. Zakhidov, A. Y. Karasik, M. A. Kasymdzhanov, F. M. Mirtadzhiev,<br />

A. M. Prokhorov, and P. K. Khabibullaev, Sov. J. Quantum Electron. 17, 517 (1987).<br />

[18] T. Morioka, M. Saruwatari, and A. Takada, Electron. Lett. 23, 453 (1987).<br />

[19] K. C. Byron, Electron. Lett. 23, 1324 (1987).<br />

[20] T. Morioka and M. Saruwatari, Electron. Lett. 23, 1330 (1987); IEEE J. Sel. Areas Commun.<br />

6, 1186 (1988).<br />

[21] I. H. White, R. V. Penty, and R. E. Epworth, Electron. Lett. 24, 340 (1988).<br />

[22] M. Asobe, T. Kanamori, and K. Kubodera, IEEE Photon. Technol. Lett. 4, 362 (1992);<br />

IEEE J. Quantum Electron. 29, 2325 (1993).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!