12.11.2023 Aufrufe

vgbe energy journal 11 (2022) - International Journal for Generation and Storage of Electricity and Heat

vgbe energy journal - International Journal for Generation and Storage of Electricity and Heat. Issue 11 (2022). Technical Journal of the vgbe energy e.V. - Energy is us! NOTICE: Please feel free to read this free copy of the vgbe energy journal. This is our temporary contribution to support experience exchange in the energy industry during Corona times. The printed edition, subscription as well as further services are available on our website, www.vgbe.energy +++++++++++++++++++++++++++++++++++++++++++++++++++++++

vgbe energy journal - International Journal for Generation and Storage of Electricity and Heat.
Issue 11 (2022).
Technical Journal of the vgbe energy e.V. - Energy is us!

NOTICE: Please feel free to read this free copy of the vgbe energy journal. This is our temporary contribution to support experience exchange in the energy industry during Corona times. The printed edition, subscription as well as further services are available on our website, www.vgbe.energy

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

MEHR ANZEIGEN
WENIGER ANZEIGEN
  • Keine Tags gefunden...

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Future Energy Systems<br />

In summary, most <strong>energy</strong> system studies consist<br />

<strong>of</strong> a selection <strong>of</strong> scenarios, each <strong>of</strong> which<br />

represents the solution <strong>of</strong> an optimization<br />

problem under changing boundary conditions.<br />

The <strong>energy</strong> system is represented in a<br />

highly abstracted way as a set <strong>of</strong> <strong>energy</strong> <strong>and</strong><br />

mass balances with the corresponding<br />

boundary conditions. The three main components<br />

are the incoming <strong>energy</strong> <strong>and</strong> material<br />

flows, the technologies <strong>for</strong> <strong>energy</strong> conversion<br />

<strong>and</strong> transport as well as the respective <strong>energy</strong><br />

dem<strong>and</strong> <strong>of</strong> the considered sectors.<br />

In principle, the prediction <strong>of</strong> future events<br />

<strong>and</strong> thus also the development <strong>of</strong> an <strong>energy</strong><br />

system is not possible. The widespread assumption<br />

that decisions can be made on the<br />

basis <strong>of</strong> a perfect future scenario is not true<br />

due to its non-existence [4]. Rather, individual<br />

scenarios always have to be interpreted<br />

in context <strong>of</strong> the respective boundary<br />

conditions. Nevertheless, <strong>energy</strong> system<br />

studies are broadly used to discuss economic<br />

<strong>and</strong> political decisions.<br />

2.1 Considered Studies<br />

The selection <strong>of</strong> system studies used <strong>for</strong> this<br />

meta-analysis is based on a set <strong>of</strong> criteria.<br />

The minimum requirements <strong>for</strong> the studies<br />

are as follows:<br />

––<br />

Considered time frame at least until 2030<br />

––<br />

Publication in 2017 or newer<br />

––<br />

Reference <strong>energy</strong> system is the German<br />

power sector<br />

––<br />

Only studies with quantitative results are<br />

considered<br />

However, when selecting the studies, special<br />

emphasis was placed on obtaining a broad<br />

data basis regarding various institutes,<br />

sponsors <strong>and</strong> different thematic focuses.<br />

Ta b l e 1 shows a list <strong>of</strong> the 40 studies considered.<br />

A more detailed description <strong>of</strong> the<br />

individual studies can be found in [1].<br />

2.2 Definition <strong>of</strong> scenario<br />

characteristics<br />

Each <strong>of</strong> the studies considered contains an<br />

average <strong>of</strong> 4 scenarios. The various boundary<br />

conditions that are imposed on the respective<br />

scenarios serve to map the possible<br />

development trends <strong>of</strong>, <strong>for</strong> example, technologies,<br />

political decisions or social acceptance<br />

<strong>for</strong> measures. Most <strong>of</strong> the scenarios can<br />

be divided into four or five scenario types<br />

(see Ta b l e 2 ). These types are used as a<br />

m<strong>and</strong>atory allocation <strong>for</strong> each scenario. In<br />

addition to the categorization, each scenario<br />

can be described by further characteristics.<br />

While the scenario types each st<strong>and</strong> <strong>for</strong> a set<br />

<strong>of</strong> several characteristics, a more detailed<br />

analysis <strong>of</strong> the influences <strong>of</strong> the boundary<br />

conditions can be examined by separate<br />

analysis <strong>of</strong> each characteristic. For this purpose,<br />

the influence <strong>of</strong> a selection <strong>of</strong> characteristics<br />

(see Ta b l e 3 ) is evaluated in section<br />

3.2.<br />

Tab. 1. Summary <strong>of</strong> all considered studies <strong>and</strong> respective reference as further used.<br />

Ref.<br />

Titel<br />

[5] Wasserst<strong>of</strong>fbasierte Industrie in Deutschl<strong>and</strong> und Europa<br />

[6] Energiewirtschaftliche Projektionen und Folgeabschätzungen 2030/2050<br />

[7] Strommarkt und Klimaschutz: Trans<strong>for</strong>mation der Stromerzeugung bis 2050<br />

[8] Klimaneutrales Deutschl<strong>and</strong> 2045<br />

[9] Netzentwicklungsplan Strom 2035<br />

[10] Das „BEE-Szenario 2030“<br />

[<strong>11</strong>] dena-Leitstudie Aufbruch Klimaneutralität<br />

[12] Klimaneutrales Deutschl<strong>and</strong><br />

[13] Strommarktentwicklung und Braunkohlebedarf unter der Prämisse<br />

des Braunkohleausstiegspfads<br />

[14] Wege zu einem klimaneutralen Energiesystem<br />

[15] Politikszenarien VIII<br />

[16] Trans<strong>for</strong>mation des Energiesystems bis zum Jahr 2030<br />

[17] Wege für die Energiewende – Kosteneffiziente und klimagerechte<br />

Trans<strong>for</strong>mationsstrategien für das deutsche Energiesystem bis zum Jahr 2050<br />

[18] Wasserst<strong>of</strong>f- Studie. Chancen, Potentiale & Heraus<strong>for</strong>derungen im globalen<br />

Energiesystem.<br />

[19] Auswirkungen einer Beendigung der Kohleverstromung bis 2038 auf den Strommarkt,<br />

CO 2 -Emissionen und ausgewählte Industrien<br />

[20] Projektionsbericht der Bundesregierung 2019<br />

[21] Zukunft Stromsystem II – Regionalisierung der erneuerbaren Stromerzeugung<br />

[22] Modellbasierte Szenarienuntersuchung der Entwicklungen im deutschen Stromsystem<br />

unter Berücksichtigung des europäischen Kontexts bis 2050<br />

[23] Das „BEE-Szenario 2030“<br />

[24] Noch ist erfolgreicher Klimaschutz möglich<br />

[25] Analyse von Strukturoptionen zur Integration erneuerbarer Energien in Deutschl<strong>and</strong> und<br />

Europa unter Berücksichtigung der Versorgungssicherheit<br />

[26] Energy systems: Dem<strong>and</strong> perspective (WP5 Summary report)<br />

[27] Pathways <strong>for</strong> Germany’s Low-Carbon Energy Trans<strong>for</strong>mation Towards 2050<br />

[28] Technoökonomische Analyse und Trans<strong>for</strong>mationspfade des energetischen<br />

Biomassepotentials<br />

[29] Wege in eine ressourcenschonende Treibhausgasneutralität<br />

[30] Netzentwicklungsplan Strom 2030<br />

[31] Erneuerbare Energien als Schlüssel für das Erreichen der Klimaschutzziele im Stromsektor<br />

[32] Langfristszenarien für die Trans<strong>for</strong>mation des Energiesystems in Deutschl<strong>and</strong><br />

[33] dena-Leitstudie Integrierte Energiewende<br />

[34] Klimapfade für Deutschl<strong>and</strong><br />

[35] Innovation Energiespeicher – Chancen der deutschen Industrie<br />

[36] Szenarien für den Strommix zukünftiger, flexibler Verbraucher<br />

am Beispiel von P2X-Technologien<br />

[37] Politikszenarien für den Klimaschutz VII – Treibhausgas-Emissionsszenarien<br />

bis zum Jahr 2035<br />

[38] The role <strong>of</strong> hydrogen, battery-electric vehicles <strong>and</strong> heat as flexibility option in future<br />

<strong>energy</strong> systems<br />

[39] Energiemarkt 2030 und 2050 – Der Beitrag von Gas- und Wärmeinfrastruktur<br />

zu einer effizienten CO 2 -Minderung<br />

[40] »Sektorkopplung« – Optionen für die nächste Phase der Energiewende<br />

[41] Klimaschutz im Stromsektor 2030 - Vergleich von Instrumenten zur Emissionsminderung<br />

[42] Shell Energieszenarien für Deutschl<strong>and</strong><br />

[43] Zukunft Stromsystem – Kohleausstieg 2035<br />

[44] Erneuerbare Gase – ein Systemupdate der Energiewende<br />

In contrast to the scenario types presented<br />

above, the assignment <strong>of</strong> additional characteristics<br />

is not m<strong>and</strong>atory. The assignment<br />

can be divided into two groups. The first<br />

group includes all characteristics, which are<br />

determined by the presence or absence (yes<br />

or no). The second group has a three-stage<br />

gradient into high, mid <strong>and</strong> low. The first<br />

group includes, <strong>for</strong> example, the consideration<br />

<strong>of</strong> the coal phase-out by 2038, the nuclear<br />

power phase-out or the explicit<br />

achievement <strong>of</strong> the greenhouse gas emission<br />

targets according to the Climate Protection<br />

Plan 2050. Regarding the second, three-level<br />

characterization, the use <strong>of</strong> a variety <strong>of</strong> characteristics<br />

is possible to describe the scenari-<br />

34 | <strong>vgbe</strong> <strong>energy</strong> <strong>journal</strong> <strong>11</strong> · <strong>2022</strong>

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!