22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

154 TIME-DOMAIN LIFETIME MEASUREMENTS<br />

195. Alcala JR. 1994. The effect <strong>of</strong> harmonic conformational trajectories<br />

on protein fluorescence and lifetime distributions. J Chem Phys<br />

101(6):4578–4584.<br />

196. Alcala JR, Gratton E, Prendergast FG. 1987. <strong>Fluorescence</strong> lifetime<br />

distributions in proteins. Biophys J 51:597–604.<br />

197. James DR, Ware WR. 1985. A fallacy in the interpretation <strong>of</strong> fluorescence<br />

decay parameters. Chem Phys Lett 120(4,5):455–459.<br />

198. Vix A, Lami H. 1995. Protein fluorescence decay: discrete components<br />

or distribution <strong>of</strong> lifetimes? Really no way out <strong>of</strong> the dilemma?<br />

Biophys J 68:1145–1151.<br />

199. Lakowicz JR, Cherek H, Gryczynski I, Joshi N, Johnson ML.<br />

1987. Analysis <strong>of</strong> fluorescence decay kinetics measured in the frequency-domain<br />

using distribution <strong>of</strong> decay times. Biophys Chem 28:<br />

35–50.<br />

200. Beechem JM, Knutson JR, Ross JBA, Turner BW, Brand L. 1983.<br />

Global resolution <strong>of</strong> heterogeneous decay by phase/modulation fluorometry:<br />

mixtures and proteins. Biochemistry 22:6054–6058.<br />

201. Beechem JM, Ameloot M, Brand L. 1985. Global analysis <strong>of</strong> fluorescence<br />

decay surfaces: excited-state reactions. Chem Phys Lett<br />

120(4,5):466–472.<br />

202. Knutson JR, Beechem JM, Brand L. 1983. Simultaneous analysis <strong>of</strong><br />

multiple fluorescence decay curves: a global approach. Chem Phys<br />

Lett 102(6):501–507.<br />

203. Beechem JM. 1989. A second generation global analysis program for<br />

the recovery <strong>of</strong> complex inhomogeneous fluorescence decay kinetics.<br />

Chem Phys Lipids 50:237–251.<br />

204. Beechem JM, Gratton E, Ameloot M, Knutson JR, Brand L. 1991.<br />

The global analysis <strong>of</strong> fluorescence intensity and anisotropy decay<br />

data: second-generation theory and programs. In Topics in fluorescence<br />

spectroscopy, Vol. 2: <strong>Principles</strong>, pp. 241–305. Ed JR<br />

Lakowicz. Plenum Press, New York.<br />

205. Beechem JM. 1992. Global analysis <strong>of</strong> biochemical and biophysical<br />

data. Methods Enzymol 210:37–55.<br />

206. Chabbert M, Hillen W, Hansen D, Takahashi M, Bousquet J-A. 1992.<br />

Structural analysis <strong>of</strong> the operator binding domain <strong>of</strong> Tn10-Encoded<br />

tet repressor: a time-resolved fluorescence and anisotropy study.<br />

Biochemistry 31:1951–1960.<br />

207. Dattelbaum JD, Castellano FN. Unpublished observations.<br />

208. Maus M, Rousseau E, Cotlet M, Schweitzer G, H<strong>of</strong>kens J, Van der<br />

Auweraer M, De Schryver FC, Krueger A. 2001. New picosecond<br />

laser system for easy tunability over the whole ultraviolet/visible/<br />

near infrared wavelength range based on flexible harmonic generation<br />

and optical parametric oscillation. Rev Sci Instrum 72(1):36–40.<br />

209. Frackowiak D, Zelent B, Malak H, Planner A, Cegielski R, Munger<br />

G, Leblanc RM. 1994. <strong>Fluorescence</strong> <strong>of</strong> aggregated forms <strong>of</strong> CHl" in<br />

various media. J Photochem Photobiol A: Chem 78:49–55.<br />

210. Werst M, Jia Y, Mets L, Fleming GR. 1992. Energy transfer and trapping<br />

in the photosystem I core antenna. Biophys J 61:868–878.<br />

211. Gulotty RJ, Mets L, Alberte RS, Fleming GR. 1986. Picosecond fluorescence<br />

studies <strong>of</strong> excitation dynamics in photosynthetic light-harvesting<br />

arrays. In applications <strong>of</strong> fluorescence in the biomedical sciences,<br />

pp. 91-104. Ed DL Taylor, AS Waggoner, F Lanni, RF<br />

Murphy, RR Birge. Alan R. Liss, New York.<br />

212. Visser AJWG. 1984. Kinetics <strong>of</strong> stacking interactions in flavin adenine<br />

dinucleotide from time-resolved flavin fluorescence.<br />

Photochem Photobiol 40(6):703–706.<br />

213. Dudewicz EJ, Van Der Meulen EC. 1981. Entropy-based tests <strong>of</strong> uniformity.<br />

J Am Stat Assoc 76(376):967–974.<br />

214. Livesey AK, Brochon JC. 1987. Analyzing the distribution <strong>of</strong> decay<br />

constants in pulse-fluorimetry using the maximum entropy method.<br />

Biophys J 52:693–706.<br />

215. Vincent M, Brochon J-C, Merola F, Jordi W, Gallay J. 1988.<br />

Nanosecond dynamics <strong>of</strong> horse heart apocytochrome c in aqueous<br />

solution as studied by time-resolved fluorescence <strong>of</strong> the single tryptophan<br />

residue (Trp-59). Biochemistry 27:8752–8761.<br />

216. Merola F, Rigler R, Holmgren A, Brochon J-C. 1989. Picosecond<br />

tryptophan fluorescence <strong>of</strong> thioredoxin: Evidence for discrete<br />

species in slow exchange. Biochemistry 28:3383–3398.<br />

217. Sopkova J, Vincent M, Takahashi M, Lewit-Bentley A, Gallay J.<br />

1999. Conformational flexibility <strong>of</strong> domain III <strong>of</strong> Annexin V at membrane/water<br />

interfaces. Biochemistry 38:5447–5458.<br />

218. Luecke H, Chang BT, Mailliard WS, Schlaepfer DD, Harry H. 1995.<br />

Crystal structure <strong>of</strong> the annexin XII hexamer and implications for<br />

bilayer insertion. Nature 378(6556):512–515.<br />

219. Rouvière N, Gallay J. 2000. Wavelength-resolved fluorescence emission<br />

<strong>of</strong> proteins using the synchrontron radiation as pulsed-light<br />

source: Cross-correlations between lifetimes, rotational correlation<br />

times and tryptophan heterogeneity in FKBP59 immunophilin. Cell<br />

Mol Biol 46(5):1113–1131.<br />

220. Becker W. 2005. Advanced time-correlated single photon counting<br />

techniques. Springer, New York.<br />

PROBLEMS<br />

P4.1. Calculation <strong>of</strong> Lifetimes: Use the data in Figures 4.1 and<br />

4.2 to estimate the lifetime from the time-domain data,<br />

and from the phase and modulation.<br />

P4.2. Fractional Intensity <strong>of</strong> Components in the Tryptophan<br />

Intensity Decay: At pH 7, tryptophan displays a doubleexponential<br />

intensity decay. At 320 nm the intensity<br />

decay low is I(t) = 0.19 exp(–t/0.62 ns) + 0.81<br />

exp(–t/3.33 ns). What is the fractional contribution <strong>of</strong><br />

the 0.62-ns component to the steady-state intensity at<br />

320 nm?<br />

P4.3. Stacking Equilibrium in Flavin Adenine Dinucleotide:<br />

Use the intensity decays and lifetimes in Figure 4.61 to<br />

calculate the collisional rate between the flavin and adenine<br />

groups in FAD.<br />

P4.4. Average Lifetime: Suppose that a protein contains two<br />

tryptophan residues with identical lifetimes (τ 1 = τ 2 = 5<br />

ns) and pre-exponential factors (α 1 = α 2 = 0.5). Now<br />

suppose that a quencher is added such that the first tryptophan<br />

is quenched tenfold in both lifetime and steadystate<br />

intensity. What is the intensity decay law in the<br />

presence <strong>of</strong> quencher? What is the average lifetime (τ)<br />

and the lifetime-weighted quantum yield ()? Explain<br />

the relative values.<br />

P4.5. Decay Associated Spectra: Tables 4.5 and 4.6 list the<br />

results <strong>of</strong> the multi-exponential analysis <strong>of</strong> the two-component<br />

mixture <strong>of</strong> anthranilic acid (AA) and 2-aminopurine<br />

(2-AP). Use these data to construct the decay associated<br />

spectra. Explain the results for the DAS recovered<br />

from the non-global (Table 4.5) and global (Table 4.6)<br />

analysis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!