22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

924 INDEX<br />

Anisotropy, 353–378<br />

applications, 20–21<br />

biochemical applications, 372–374<br />

helicase-catalyzed DNA unwinding, 373–374<br />

melittin association detected from homotransfer, 374<br />

peptide binding to calmodulin, 372–373<br />

trp repressor binding to DNA, 373<br />

definition, 353–355<br />

electronic state resolution from polarization spectra, 360–361<br />

emission wavelength and, 437–438<br />

energy transfer, 453<br />

excitation anisotropy spectra, 358–361, 531–533<br />

excitation photoselection <strong>of</strong> fluorophores, 357–358<br />

instrumentation, 36–37<br />

lifetime-resolved, 435–436<br />

measurement, 361–366<br />

comparison <strong>of</strong> methods, 363–364<br />

depolarization, trivial causes, 365–366<br />

factors affecting anisotropy, 366<br />

L-format or single channel method, 361–363<br />

magic-angle polarizer conditions, 364<br />

polarizer alignment, 364<br />

resonance energy-transfer effects, 364–365<br />

T-format or two-channel method, 363–364<br />

total intensity, 364<br />

membranes and membrane-bound proteins, 374–377<br />

distribution, 375–377<br />

membrane microviscosity, 374–375<br />

metal–ligand complexes, 685, 688–689<br />

multiphoton excitation, 612–613, 615<br />

excitation photoselection for two-photon excitation, 612<br />

two-photon anisotropy for DPH, 612–613<br />

Perrin equation, rotational diffusion effects, 366–370<br />

examples <strong>of</strong> Perrin plots, 369–370<br />

rotational motions <strong>of</strong> proteins, 367–369<br />

Perrin plots<br />

<strong>of</strong> proteins, 370–372<br />

segmental motion effects, 436<br />

photoselection, 357–358<br />

polarization, molecular information from fluorescence, 19<br />

principles, 12–13<br />

proteins<br />

association reactions, 372–374<br />

Perrin plots, 370–372<br />

rotational motion, 102–103<br />

segmented motions, 436<br />

single-molecule detection, 775–776<br />

Soleillet's rule, depolarization factor multiplication, 436–437<br />

theory, 355–358<br />

transition moments, 377–378<br />

tryptophan, 531–532<br />

Anisotropy, advanced concepts, 413–438<br />

associated anisotropy decay, 413–417<br />

theory, 414–415<br />

time-domain measurements, 415–417<br />

biochemical examples, 417–419<br />

frequency-domain measurements, 417–418<br />

time-domain studies <strong>of</strong> DNA binding to Klenow fragment, 417<br />

DNA, 432–433<br />

ellipsoids, anisotropy decay, 419–420<br />

ellipsoids <strong>of</strong> revolution, 420–425<br />

oblate, intuitive description <strong>of</strong>, 422–423<br />

rotational correction times, 423–425<br />

simplified, 421–422<br />

stick vs. slip rotational diffusion, 425<br />

global anisotropy decay analysis, 429–432<br />

with collisional quenching, 430–431<br />

with multi-wavelength excitation, 429–430<br />

quenching application to protein anisotropy decays, 431–432<br />

planar fluorophores with high symmetry, 435<br />

rotational diffusion<br />

<strong>of</strong> ellipsoids, theory, 425–426<br />

frequency-domain studies <strong>of</strong>, 427–429<br />

<strong>of</strong> non-spherical molecules, 418–419<br />

time-domain studies, 426–427<br />

transition moments, 433–435<br />

Anisotropy decay laws, 390–394<br />

associated delays, 393<br />

correlation time distributions, 393<br />

hindered rotors, 391–392<br />

non-spherical fluorophores, 391<br />

segmental mobility <strong>of</strong> biopolymer-bound fluorophore, 392–393<br />

Anisotropy decays, 14, 102–103, 413–417<br />

energy transfer, 453<br />

in frequency domain, 588–589<br />

melittin, 590–591<br />

proteins, 587–588, 589–591<br />

ribonuclease T 1 , 584–585<br />

Anisotropy decays, time-dependent, 383–409<br />

analysis, 387–389<br />

frequency-domain decays, 390<br />

r 0 value, 389<br />

time-domain decays, 387–389<br />

correlation time imaging, 406–408<br />

laws governing, 390–394<br />

associated decays, 393<br />

correlation time distributions, 393<br />

decays <strong>of</strong> rhodamine green and rhodamine green-dextran, 394<br />

hindered rotors, 391–392<br />

non-spherical fluorophores, 391<br />

segmental mobility <strong>of</strong> biopolymer-bound fluorophore, 392–393<br />

membrane probe, characterization <strong>of</strong>, 401–402<br />

membranes, hindered rotational diffusion in, 399–402<br />

microsecond, 408–409<br />

long-lifetime metal–ligand complexes, 408–409<br />

phosphorescence, 408<br />

nucleic acids, 402–406<br />

DNA binding to HIV integrase, 404–406<br />

DNA oligomer hydrodynamics, 403<br />

intracellular DNA dynamics, 403–404<br />

proteins, frequency-domain decays <strong>of</strong>, 383–387, 397–399<br />

apomyoglobin, rigid rotor, 397–398<br />

melittin, 398<br />

oxytocin, picosecond rotational diffusion, 399<br />

proteins, time-domain decays <strong>of</strong>, 383–387, 394–397<br />

alcohol dehydrogenase, 395<br />

domain motions <strong>of</strong> immunoglobulins, 396–397<br />

free probe, effects <strong>of</strong>, 397<br />

phospholipase A 2 , 395<br />

Subtilisin Carlsberg, 395–396<br />

Anisotropy fluorescence correlation spectroscopy, 829<br />

Anisotropy polarization, 624–625<br />

molecular information from fluorescence, 19<br />

Anisotropy spectra, excitation, 358–361, 531–533<br />

Annexins, 148<br />

Annexin V, 148, 585–587

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!