22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY 795<br />

Sensing<br />

Boldt FM, Heinze J, Diez M, Petersen J, Borsch M. 2004. Real-time pH<br />

microscopy down to the molecular level by combined scanning electrochemical<br />

microscopy/single-molecule fluorescence spectroscopy.<br />

Anal Chem 76:3473–3481.<br />

Single-Molecule Detection<br />

Bohmer M, Enderlein J. 2003. <strong>Fluorescence</strong> spectroscopy <strong>of</strong> single molecules<br />

under ambient conditions: methodology and technology.<br />

ChemPhysChem 4:792–808.<br />

Enderlein J. 1999. New approach to fluorescence spectroscopy <strong>of</strong> individual<br />

molecules on surfaces. Phys Rev Lett 83(19):3804–3807.<br />

<strong>Spectroscopy</strong> <strong>of</strong> Single Molecules<br />

Basche TH, Moerner WE. 1992. Photon antibunching in the fluorescence<br />

<strong>of</strong> a single dye molecule trapped in a solid. Phys Rev Lett 69(10):<br />

1516–1519.<br />

Deperasinska I, Kozankiewicz B, Biktchantaev I, Sepiol J. 2001.<br />

Anomalous fluorescence <strong>of</strong> terrylene in neon matrix. J Phys Chem<br />

105:810–814.<br />

Donley E, Plakhotnik T. 2001. Luminescence lifetimes <strong>of</strong> single molecules<br />

in disordered media. J Chem Phys 114(22):9993–9997.<br />

Fleury L, Sick B, Zum<strong>of</strong>en G, Hecht B, Wild UP. 1998. High photo-stability<br />

<strong>of</strong> single molecules in an organic crystal at room temperature<br />

observed by scanning confocal optical microscopy. Mol Phys<br />

95(6):1333–1338.<br />

Kador L, Horne DE, Moerner WE. 1990. Optical detection and probing <strong>of</strong><br />

single dopant molecules <strong>of</strong> pentacene in a p-terphenyl host crystal by<br />

means <strong>of</strong> absorption spectroscopy. J Phys Chem 94:1237–1248.<br />

Kreiter M, Prummer M, Hecht B, Wild UP. 2002. Orientation dependence<br />

<strong>of</strong> fluorescence lifetimes near an interface. J Chem Phys 117(20):<br />

9430–9433.<br />

Hernando J, van der Schaaf M, van Dijk EMHP, Sauer M, Garcia-Parajo<br />

MF, van Hulst NF. 2003. Excitonic behavior <strong>of</strong> rhodamine dimers: a<br />

single-molecule study. J Phys Chem A 107:43–52.<br />

Hou Y, Higgins DA. 2002. Single molecule studies <strong>of</strong> dynamics in polymer<br />

thin films and at surfaces: effect <strong>of</strong> ambient relative humidity. J<br />

Phys Chem B 106:10306–10315.<br />

Sanchez EJ, Novotny L, Holtom GR, Xie XS. 1997. Room-temperature<br />

fluorescence imaging and spectroscopy <strong>of</strong> single molecules by twophoton<br />

excitation. Phys Chem A 101(38):7019–7023.<br />

Viteri CR, Gilliland JW, Yip WT. 2003. Probing the dynamic guest-host<br />

interactions in sol-gel films using single molecule spectroscopy. J<br />

Am Chem Soc 125:1980–1987.<br />

Theory <strong>of</strong> Single-Molecule <strong>Fluorescence</strong><br />

Barsegov V, Mukamel S. 2002. Multidimensional spectroscopic probes <strong>of</strong><br />

single molecule fluctuations. J Chem Phys 117(20):9465–9477.<br />

Berezhkovskii AM, Szabo A, Weiss GH. 1999. Theory <strong>of</strong> single-molecule<br />

fluorescence spectroscopy <strong>of</strong> two-state systems. J Chem Phys<br />

110(18):9145–9150.<br />

Berezhkovskii AM, Szabo A, Weiss GH. 2000. Theory <strong>of</strong> fluorescence <strong>of</strong><br />

single molecules undergoing multistate conformational dynamics. J<br />

Phys Chem B 104:3776–3780.<br />

Enderlein J. 2000. Theoretical study <strong>of</strong> detection <strong>of</strong> a dipole emitter<br />

through an objective with high numerical aperture. Opt Lett 25(9):<br />

634–636.<br />

Enderlein J. 1997. Statistics <strong>of</strong> single-molecule detection. J Phys Chem B<br />

101:3626–3632.<br />

Schenter GK, Lu HP, Xie XS. 1999. Statistical analyses and theoretical<br />

models <strong>of</strong> single-molecule enzymatic dynamics. J Phys Chem 103:<br />

10477–10488.<br />

Weston KD, Dyck M, Tinnefeld P, Muller C, Herten DP, Sauer M. 2002.<br />

Measuring the number <strong>of</strong> independent emitters in single-molecule<br />

fluorescence images and trajectories using coincident photons. Anal<br />

Chem 74:5342–5349.<br />

Zheng Y, Brown FLH. 2003. Photon emission from driven single molecules.<br />

J Chem Phys 119(22):11814–11828.<br />

Time-Resolved Studies <strong>of</strong> Single Molecules<br />

De Schryver FC. 1998. Time, space and spectrally resolved photochemistry<br />

from ensembles to single molecules. Pure Appl Chem 70(11):<br />

2147–2156.<br />

Fries JR, Brand L, Eggeling C, Kollner M, and Seidel CAM. 1998.<br />

Quantitative identification <strong>of</strong> different single molecules by selective<br />

time-resolved confocal fluorescence spectroscopy. J Phys Chem A<br />

102:6601–6613.<br />

Lee M, Kim J, Tang J, Hochstrasser RM. 2002. <strong>Fluorescence</strong> quenching<br />

and lifetime distributions <strong>of</strong> single molecules on glass surfaces.<br />

Chem Phys Lett 359:412–419.<br />

Molski A, H<strong>of</strong>kens J, Gensch T, Boens N, De Schryver FC. 2000. Theory<br />

<strong>of</strong> time-resolved single-molecule fluorescence spectroscopy. Chem<br />

Phys Lett 318:325–332.<br />

Sauer M, Wolfrum J. 1999. Single-molecule detection in biology with<br />

multiplex dyes and pulsed semiconductor lasers. In Applied<br />

<strong>Fluorescence</strong> in Chemistry, Biology and Medicine, pp. 39–58. Ed W<br />

Rettig, B Strehmel, S Schrader, H Seifert. Springer, New York.<br />

Vallee RAL, Cotlet M, H<strong>of</strong>kens J, De Schryver FC. 2003. Spatially heterogeneous<br />

dynamics in polymer glasses at room temperature probed by<br />

single molecule lifetime fluctuations. Macromolecules 36:7752–<br />

7758.<br />

PROBLEMS<br />

P23.1. Suppose you have a fluorophore with a molar extinction<br />

<strong>of</strong> 104,000 M –1 cm –1 at 600 nm, and a lifetime <strong>of</strong><br />

4 ns. Assume there is no intersystem crossing or blinking.<br />

Calculate the light intensity in watts/cm 2 needed to<br />

result in half <strong>of</strong> the molecule in the excited state. If the<br />

illuminated is 1 µm 2 what is the needed power?<br />

Assume the objective transmits 100% <strong>of</strong> the light.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!