22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY 953<br />

TMR (tetramethylrhodamine), 468<br />

fluorescence intensity distribution analysis, 818, 819<br />

Förster distances, 468<br />

time-resolved fluorescence correlation spectroscopy, 819<br />

TNB (trinitrophenyl)<br />

Förster distances, 468<br />

TNS [6-(p-toluidinyl)naphthalene-2-sulfonate]<br />

red-edge excitation, 256<br />

vesicles, TRES, 256<br />

TNS [2-(p-toluidinyl)naphthalene-6-sulfonic acid], 71–72<br />

anisotropy decay, 397–398<br />

TNS [6-(p-toluidinyl)naphthalene-2-sulfonic acid], 17–18<br />

TO, 715<br />

TO-8, 118<br />

format <strong>of</strong> photomultiplier tubes, 46<br />

[2-(p-Toluidinyl)naphthalene-6-sulfonic acid] (TNS). See TNS<br />

(2-(p-Toluidinyl)naphthalene-6-sulfonic acid)<br />

Total internal reflection (TIR), 56, 760–761, 762, 821–822, 862<br />

literature references, 839<br />

TOTIN, 715<br />

TOTO, 75, 714, 715<br />

Transfer efficiency, 446, 447<br />

Transferrin, energy transfer, 521<br />

Transient effects, time-domain lifetime measurements, 143<br />

Transient recording, 124–125<br />

Transition metal–ligand complexes. See Metal–ligand complexes<br />

(MLCs); specific elements<br />

Transition moments, anisotropy, 355, 356, 377–378, 433–435<br />

Transit time spreads (TTS), 47, 117–118, 119<br />

Translation diffusion and fluorescence correlation spectroscopy,<br />

802–804<br />

TRES. See Time-resolved emission spectra (TRES)<br />

Trichloroethanol (TCE), 278, 292<br />

Trifluoperazine, 89<br />

Trifluoroacetamide (TFA), 288<br />

Trifluoroethanol (TFE), 304<br />

Triosephosphate isomerase, 555, 556<br />

tRNA binding to tRNA synthetase, 370–371<br />

Tropomyosin, 681<br />

Troponin C, 614<br />

calcium-induced conformation changes, 490–493<br />

Troponin I, 589<br />

Trp repressor-DNA binding anisotropy, 373<br />

Trypsin, 368<br />

Tryptophan, 11, 15, 63, 490<br />

absorption and emission spectra, 16, 17<br />

acceptor decay, 489<br />

challenge <strong>of</strong>, 566–567<br />

conformational changes and accessibility, 288–289<br />

decay-associated emission spectra, 581<br />

emission, 536<br />

emission and protein structure, 560–562<br />

genetically inserted amino-acid analogues, 565–566<br />

tryptophan spectral properties and structural motifs, 561–562<br />

emission in apolar environment, 538–539<br />

emission spectra, 44<br />

energy transfer, 450, 451<br />

excitation polarization spectra, 531–533<br />

frequency-domain lifetime measurements, 188–189<br />

intensity decays, 145, 580–583<br />

multiphoton excitation <strong>of</strong>, 614<br />

mutants, 552, 555, 556<br />

pH and, 579<br />

phosphorescence <strong>of</strong>, 598–600<br />

protein fluorescence, 529–530<br />

quantum yield standards, 54<br />

resonance energy transfer in proteins, 540–541, 542<br />

rotamers, 578–579<br />

rotational correlation times, 590<br />

simulated intensity decay, 101–102<br />

solvent effects on emission spectra, 533–534<br />

spectral properties, 530, 531, 561–562<br />

spectral relaxation, 596–598<br />

structure, 579<br />

tryptophan analogs, 562–567<br />

unfolding and exposure to water, 588–589<br />

Tryptophan analogs, protein fluorescence, 562–567<br />

Tryptophan quenching, 279, 280, 283–284, 546–551. See also<br />

specific proteins<br />

accessibility <strong>of</strong> quencher, 18, 288, 291, 549–550<br />

emission maxima, effects <strong>of</strong>, 547–549<br />

emission spectra resolution by, 550–551<br />

endonuclease III, 290–291<br />

localization <strong>of</strong> membrane-bound residues, 294–295<br />

by phenylalanine, 592–593<br />

quenching constant, 281–282, 548–549<br />

Tryptophan repressor, site-directed mutagenesis, 593–594<br />

Tubulin subunits, 807–808<br />

TU2D, 500–501<br />

Turbidity, 365–366<br />

Twisted internal charge transfer (TICT) state, 207, 220, 221, 627, 645<br />

Two-channel method anisotropy measurement, 363–364<br />

Two-component mixture, global analysis, frequency-domain lifetime<br />

measurements, 182–183<br />

Two-photon excitation, 171, 608, 822–823<br />

absorption spectra, 609–610<br />

cross-sections for, 609<br />

diffusion <strong>of</strong> intracellular kinase, 823<br />

excitation photoselection, 612–613<br />

<strong>of</strong> fluorophore, 610–612<br />

instrumentation, 21–22<br />

Two-state pH sensors, 637–641<br />

Two-state relaxation, 246, 262–263<br />

model, 237<br />

Tyr-No 2<br />

Förster distances, 468<br />

Tyrosinate-like emissions, 535<br />

Tyrosine, 63, 316<br />

calcium binding to calmodulin using phenylalanine and<br />

tyrosine, 545–546<br />

dipeptides, 542<br />

emission from proteins, 535<br />

emission spectra, 44<br />

excitation polarization spectra, 531–533<br />

excited-state ionization <strong>of</strong>, 534–535<br />

intensity decays, 580–583<br />

protein fluorescence, 529<br />

quantum yield standards, 54<br />

quenchers <strong>of</strong>, 279<br />

resonance energy transfer in proteins, 540–541, 542, 543–545<br />

spectral properties, 530, 531<br />

structure, 579<br />

vasopressin, 178<br />

Tyrosine kinase, 459<br />

Tyrosine proteins, genetically engineered, 557

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!