22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

932 INDEX<br />

Energy transfer [cont'd]<br />

theory <strong>of</strong>, 445–451<br />

for donor–acceptor pair, 445–448<br />

homotransfer and heterotransfer, 450–451<br />

orientation factor, 448–449<br />

transfer rate dependence on distance, overlap integral, and<br />

orientation factor, 449–450<br />

Energy transfer, time-resolved, 477–501<br />

acceptor decays, 489<br />

advanced topics<br />

single-protein-molecule distance distribution, 496–497<br />

biochemical applications <strong>of</strong> distance distributions, 490–496<br />

calcium-induced changes in troponin C conformation,<br />

490–493<br />

DNA, four-way Holliday junction in, 493–494<br />

hairpin ribozyme, 493<br />

unfolding <strong>of</strong> yeast phosphoglycerate kinase, 494–495<br />

diffusion effects for linked D–A pairs, 498–501<br />

experimental measurement, 500–501<br />

RET and diffusive motions in biopolymers, 501<br />

simulations <strong>of</strong> RET for flexible pair, 499–500<br />

distance distribution data analysis, 485–489<br />

frequency-domain analysis, 485–487<br />

time-domain analysis, 487<br />

distance distribution in proteins<br />

analysis with frequency domain data, 485–487<br />

distance distribution functions, 487<br />

from time-domain measurements, 487<br />

distance distributions from steady-state data, 443<br />

D–A pairs with different R 0 values, 445–446<br />

quenching, changing R 0 by, 447<br />

distance distributions in glycopeptide, 495–496<br />

distance distributions in peptides, 479–482<br />

concentration <strong>of</strong> D–A pairs and, 482<br />

cross-fitting data to exclude alternative models, 481–482<br />

donor decay without acceptor, 482<br />

rigid vs. flexible hexapeptide, 479–481<br />

distance distributions in proteins, 482–485<br />

domain motion in, 501<br />

melittin, 483–485<br />

incomplete labeling effects, 487–489<br />

orientation factor effects, 489<br />

representative literature references, 504<br />

RET imaging, 497–498<br />

Energy-transfer efficiency from enhanced fluorescence,<br />

461–462<br />

Energy-transfer immunoassay, 660–661<br />

Energy-transfer stains and dyes, DNA, 715<br />

Energy transfer to multiple acceptors in one, two, or three dimensions,<br />

507–524<br />

dimensionality effect on RET, 511–515<br />

one dimension, 514–515<br />

two dimensions, 512–514<br />

with multiple acceptors, 515–516<br />

aggregation <strong>of</strong> β-amyloid peptides, 515–516<br />

RET imaging <strong>of</strong> fibronectin, 516<br />

in presence <strong>of</strong> diffusion, 519–524<br />

restricted geometries, 516–519<br />

effect <strong>of</strong> excluded area, 518–519<br />

RET in rapid-diffusion limit, 520–524<br />

acceptor location in lipid vesicles, 521–522<br />

retinal location in rhodopsin disk membranes, 522–524<br />

three dimensions, 507–511<br />

diffusion effects on RET with unlinked donors and acceptors,<br />

508–509<br />

experimental studies, 509–511<br />

Enzyme c<strong>of</strong>actors<br />

intrinsic fluorescence, 63–65<br />

time-domain lifetime measurement, 147<br />

Enzyme kinetics, 770<br />

Enzymes<br />

DNA, degradation, 808<br />

turnover <strong>of</strong>, 780–781, 782<br />

Eosin, 10, 633<br />

Eosin-labeled ethanolamine, 448<br />

Eosin-labeled lipid, 447<br />

Epifluorescence, 41<br />

Epi-illumination, 761<br />

Erbium, 682, 683<br />

Erythrosin, 408<br />

Erythrosin B, 10<br />

Escherichia coli maltose-binding protein, 653<br />

Escherichia coli Tet repressor, 302–304<br />

Estradiol, 80<br />

Estrogens, intracellular RET indicator for, 458<br />

1,2-Ethanedithiol (EDT), 86<br />

Ethanol<br />

indole emission spectra in cyclohexane-ethanol mixture, 533–534<br />

indole lifetime in, 533–534<br />

polarizability properties, 207<br />

rotational diffusion in, 367<br />

specific solvent effects, 213, 214<br />

tryptophan anisotropy spectra in, 533<br />

Ethenoadenine derivatives, 287–288<br />

Förster distances, 468<br />

Ethers, 209, 279<br />

Ethidium bromide, 75, 286<br />

anisotropy decay, 402, 403–404, 432–433<br />

DNA technology, 713, 714<br />

energy transfer in one dimension, 514, 515<br />

metal–ligand probes, 688<br />

Ethidium homodimer, 75<br />

Ethoxycoumarin, 230<br />

Ethyl acetate, 206–207<br />

Ethylaniline, 338<br />

Ethylcellulose, 634<br />

Ethylenediamine, dansylated, 229, 230<br />

1-Ethylpyrene, 286<br />

Europium, 3<br />

as fluorophores, 679<br />

Förster distances, 468<br />

immunoassays, 659<br />

metal-enhanced fluorescence, 843, 844<br />

Excimers, 9, 269–270<br />

DNA hybridization, 225, 718–719<br />

Exciplex formation, 9, 278<br />

Excitation, polarized, 778<br />

Excitation anisotropy, two-photon and multiphoton, 21–22, 612–613<br />

Excitation anisotropy spectra, 358–361, 531–533<br />

Excitation filter, 41<br />

Excitation photoselection <strong>of</strong> fluorophores, 357–358<br />

Excitation spectra<br />

anisotropy, 358–360, 531–533<br />

instrumentation, 27–31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!