22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY 877<br />

Figure I.4. Corrected and normalized fluorescence spectra for some<br />

β-carboline derivatives: (1) harmine 0.1 N H 2 SO 4 ; (2) 2-methyl<br />

harmine 0.1 N H 2 SO 4 ; (3) harmane 0.1 N H 2 SO 4 ; (4) nor-harmane 0.1<br />

N H 2 SO 4 ; (5) harmaline 0.01 N H 2 SO 4 . Revised from [2]. Copyright<br />

© 1992, with permission from Elsevier Science.<br />

3. CORRECTED EMISSION SPECTRA OF<br />

9,10-DIPHENYLANTHRACENE, QUININE,<br />

AND FLUORESCEIN<br />

Corrected spectra in quanta per wavelength interval I(λ)<br />

were published for these three compounds 4 (Figure I.5 and<br />

Table I.6). The emission spectrum for quinine was found to<br />

be at somewhat shorter wavelengths than that published by<br />

Melhuish. 5<br />

4. LONG-WAVELENGTH STANDARDS<br />

Corrected emission spectra in relative quanta per wavelength<br />

interval were reported 4 for quinine sulfate (QS), 3-<br />

Figure I.5. Corrected emission spectra in relative photons per wavelength<br />

interval (I(λ)) for 9,10-diphenylanthracene, quinine sulfate,<br />

and fluorescein. From [4].<br />

Table I.5. Corrected Emission Intensities for β-Carboline<br />

in 1.0 N H 2 SO 4 at 25°C a<br />

Wave- Corrected Wave- Corrected<br />

length (nm) intensity length (nm) intensity<br />

380 0.001 510 0.417<br />

390 0.010 520 0.327<br />

400 0.068 530 0.255<br />

410 0.243 540 0.193<br />

420 0.509 550 0.143<br />

430 0.795 560 0.107<br />

440 0.971 570 0.082<br />

450 1.000 580 0.059<br />

460 0.977 590 0.044<br />

470 0.912 600 0.034<br />

480 0.810 610 0.025<br />

490 0.687 620 0.019<br />

500 0.540 630 0.011<br />

a Excitation at 360 nm. From [3].<br />

aminophthalimide (3-APT), and N,N-dimethylamino-mnitrobenzene<br />

(N,N-DMAMB). Chemical structures are<br />

shown in Figure I.6. These standards are useful because<br />

they extend the wavelength range to 750 nm (Figure I.7).<br />

Table I.6. Corrected Emission Spectra in Relative Quanta<br />

per Wavelength Interval (from [4])<br />

Quinine<br />

sulfate a Fluorescein b DPA c<br />

λ (nm) I(λ) λ (nm) I(λ) λ (nm) I (λ)<br />

310 0 470 0 380 0<br />

350 4 480 7 390 39<br />

380 18 490 151 400 423<br />

400 151 495 360 412 993<br />

410 316 500 567 422 914<br />

420 538 505 795 432 1000<br />

430 735 510 950 440 882<br />

440 888 512 1000 450 607<br />

445 935 515 985 460 489<br />

450 965 520 933 470 346<br />

455 990 525 833 480 222<br />

457.2 1000 530 733 490 150<br />

400 998 540 533 500 103<br />

465 979 550 417 550 4<br />

470 951 560 333 600 0<br />

475 916 570 233<br />

480 871 580 167<br />

490 733 600 83<br />

500 616 620 42<br />

520 408 640 17<br />

550 171 650 8<br />

600 19 670 0<br />

650 3<br />

700 0<br />

a Quinine sulfate was in 1.0 N H2 SO 4 , excitation at 346.5.<br />

b Fluorescein (Uranine) was in 0.1 N NaOH, excitation at 322 nm.<br />

c 9,10-diphenylanthracene (DPA) was in benzene, excitation at 385 nm.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!