22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

468 ENERGY TRANSFER<br />

Table 13.3. Representative Förster Distances for<br />

Various Donor–Acceptor Pairs a<br />

summarized in Table 13.3 for a variety <strong>of</strong> D–A pairs, and in<br />

Table 13.4 for tryptophan donor–acceptor pairs. In the case<br />

<strong>of</strong> lanthanides in environments where the quantum yield is<br />

near unity, and for multi-chromophore acceptors, R 0 values<br />

as large as 90 Å have been calculated. 95 This is the largest<br />

Förster distance reported to date.<br />

REFERENCES<br />

Donor Acceptor R 0 (Å)<br />

Naphthalene 14 Dansyl 22<br />

Dansyl 95 FITC 33–41<br />

Dansyl 14 ODR 43<br />

ε-A 14 NBD 38<br />

IAF 14 TMR 37–50<br />

Pyrene 14 Coumarin 39<br />

FITC 14 TMR 49–54<br />

IAEDANS 14 FITC 49<br />

IAEDANS 14 IAF 46–56<br />

IAF 14 EIA 46<br />

CF TR 51<br />

Bodipy 25 Bodipy 57<br />

BPE 14 Cy5 72<br />

Terbium 96 Rhodamine 65<br />

Europium 94 Cy5 70<br />

Europium 97 APC 90<br />

a Dansyl, 5-dimethylamino-1-napthalenesulfonic acid.<br />

ε-A, 1-N 6 -ethenoadenosine; APC, allophycocyanin;<br />

Bodipy, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene;<br />

BPE, B-phycoerythrin; CF, carboxylfluorescein, succinimidyl<br />

ester; Cy5, carboxymethylindocyanine-N-hydroxysuccinimidyl<br />

ester; EIA, 5-(iodoacetamido) eosin;<br />

FITC, fluorescein-5-isothiocyanate; IAEDANS, 5-(2-<br />

0((iodocetyl)amino)ethyl)amino)naphthalene-1-sulfonic<br />

acid; IAF, 5-iodoacetamid<strong>of</strong>luorescein; NBD, 7-nitrobenz-2-oxa-1,3-diazol-4-yl;<br />

ODR, octadecylrhodamine;<br />

TMR, tetramethylrhodamine; TR, Texas Red.<br />

1. Förster Th. 1948. Intermolecular energy migration and fluorescence.<br />

Ann Phys 2:55–75. [Translated by RS Knox, Department <strong>of</strong> Physics<br />

and Astronomy, University <strong>of</strong> Rochester, Rochester, NY 14627.]<br />

2. Stryer L. 1978. <strong>Fluorescence</strong> energy transfer as a spectroscopic ruler.<br />

Annu Rev Biochem 47:819–846.<br />

3. Steinberg IZ. 1971. Long-range nonradiative transfer <strong>of</strong> electronic<br />

excitation energy in proteins and polypeptides. Annu Rev Biochem<br />

40:83–114.<br />

4. Clegg RM. 1996. <strong>Fluorescence</strong> resonance energy transfer. In<br />

<strong>Fluorescence</strong> imaging spectroscopy and microscopy, pp. 179–252.<br />

Ed XF Wang, B Herman. John Wiley & Sons, New York.<br />

Table 13.4. Förster Distances for<br />

Tryptophan–Acceptor Pairs a<br />

Donor Acceptor b R 0 (Å)<br />

Trp Nitrobenzoyl 16<br />

Trp Dansyl 21–24<br />

Trp IAEDANS 22<br />

Trp Anthroyloxyl 24<br />

Trp TNB 24<br />

Trp Anthroyl 25<br />

Trp Tyr–NO 2 26<br />

Trp Pyrene 28<br />

Trp Heme 29<br />

Trp NBS 30<br />

Trp DNBS 33<br />

Trp DPH 40<br />

aFrom [14].<br />

bANS, 6-anilinonaphthalene-2-sulfonic acid; Dansyl, 5dimethylamino-1-napthalenesulfonic<br />

acid; DPH, 1,6diphenyl-1,3,5-hexatriene;<br />

DNBS, dinitrobenzenesulfonyl;<br />

IAEDANS, 5-(((2-iodocetyl)amino)ethyl)amino)naphthalene-1-sulfonic<br />

acid; NBS, nitrobenzenesulfenyl;<br />

TNB, trinitrophenyl; TNB, trinitrophanyl.<br />

5. Fung BKK, Stryer L. 1978. Surface density determination in membranes<br />

by fluorescence energy transfer. Biochemistry 17:5241–5248.<br />

6. Yekta A, Duhamel J, Winnik MA. 1995. Dipole–dipole electronic<br />

energy transfer: fluorescence decay functions for arbitrary distributions<br />

<strong>of</strong> donors and acceptors—systems with planar geometry. Chem<br />

Phys Lett 235:119–125.<br />

7. Rolinski OJ, Birch DJS. 2000. Determination <strong>of</strong> acceptor distribution<br />

from fluorescence resonance energy transfer: theory and simulation.<br />

J Chem Phys 112(20):8923–8933.<br />

8. Weller A. 1974. Theodor Förster. Ber Bunsenges Phys Chem<br />

78:969–971.<br />

9. Gordon M, Ware WR., eds. 1975. The exciplex. Academic Press,<br />

New York. [See the Introduction about Theodor Förster.]<br />

10. Dale RE, Eisinger J, Blumberg WE. 1979. The orientational freedom<br />

<strong>of</strong> molecular probes: the orientation factor in intramolecular energy<br />

transfer. Biophys J 26:161–194; Errata 30:365 (1980).<br />

11. Dale RE, Eisinger J. 1975. Polarized excitation energy transfer. In<br />

Biochemical fluorescence, concepts, Vol. 1, pp. 115–284. Ed RF<br />

Chen, H Edelhoch. Marcel Dekker, New York.<br />

12. Dale RE, Eisinger J. 1974. Intramolecular distances determined by<br />

energy transfer: dependence on orientational freedom <strong>of</strong> donor and<br />

acceptor. Biopolymers 13:1573–1605.<br />

13. Cheung HC. 1991. Resonance energy transfer. In Topics in fluorescence<br />

spectroscopy, Vol. 2: <strong>Principles</strong>, pp. 127–176. Ed JR<br />

Lakowicz. Plenum Press, New York.<br />

14. Wu P, Brand L. 1994. Resonance energy transfer: methods and applications<br />

[review]. Anal Biochem 218:1–13.<br />

15. Dos Remedios CG, Moens PDJ. 1995. <strong>Fluorescence</strong> resonance energy<br />

transfer spectroscopy is a reliable "ruler" for measuring structural<br />

changes in proteins. J Struct Biol 115:175–185.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!