22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PRINCIPLES OF FLUORESCENCE SPECTROSCOPY 935<br />

Frequency-domain lifetime measurements, 157–204<br />

apparent phase and modulation lifetime, 191–192<br />

background correction, 169–170<br />

biochemical examples, 186–189<br />

DNA, DAPI-labeled, 186–187<br />

fluorescence microscopy with LED light source, 189<br />

Mag-Quin-2, magnesium probe, 187–188<br />

melittin lifetime distributions, cross fitting <strong>of</strong> models, 188–189<br />

recovery <strong>of</strong> lifetime distributions from data, 188<br />

color effects, 168–169<br />

gigahertz fluorometry, 175–178<br />

biochemical examples, 177–178<br />

measurements, 177<br />

instrumentation, 163–168<br />

cross-correlation detection, 166<br />

frequency synthesizers, 167<br />

history, 163–164<br />

light modulators, 165–166<br />

200-MHz fluorometers, 164–165<br />

photomultiplier tubes, 167–168<br />

principles <strong>of</strong> measurement, 168<br />

radio-frequency amplifiers, 167<br />

multi-exponential data analysis, 178–186<br />

global analysis <strong>of</strong> two-component mixture, 182–183<br />

two closely spaced lifetimes, 180–182<br />

two widely spaced lifetimes, 178–180<br />

multi-exponential decay analysis<br />

maximum entropy analysis, 185–186<br />

three-component mixture, limits <strong>of</strong> resolution, 183–185<br />

three-component mixture, resolution <strong>of</strong> 10-fold range <strong>of</strong><br />

decay times, 185<br />

phase angle and modulation spectra, 189–191<br />

phase modulation fluorescence equations, derivation <strong>of</strong>, 192–194<br />

cross-correlation detection, 194<br />

lifetime relationship to phase angle and modulation, 192–194<br />

phase-modulation resolution <strong>of</strong> emission spectra, 197–199<br />

phase-sensitive emission spectra, 194–197<br />

examples <strong>of</strong> PSDF and phase suppression, 196–197<br />

representative decays, 170–173<br />

collisional quenching <strong>of</strong> chloride sensor, 171–172<br />

exponential, 170–171<br />

green fluorescent protein, one- and two-photon excitation, 171<br />

intensity decay <strong>of</strong> NADH, 172<br />

multi-exponential decays <strong>of</strong> staphylococcal nuclease and<br />

melittin, 171<br />

SPQ, collisional quenching, 171–172<br />

scattered light, 172–173<br />

simple frequency-domain instruments, 173–175<br />

laser diode excitation, 174<br />

LED excitation, 174–175<br />

theory, 158–163<br />

global analysis <strong>of</strong> data, 162–163<br />

least-squares analysis <strong>of</strong> intensity decays, 161–162<br />

Frequency-domain measurements<br />

anisotropy decay, 417–418, 428–429, 588–589<br />

excimer formation, 269–270<br />

laser scanning microscopy, 750–751<br />

protein distance distributions from, 485–487<br />

time-domain lifetime measurements, 98–100<br />

lifetime or decay time, meaning <strong>of</strong>, 99<br />

phase modulation lifetimes, 99–100<br />

Frequency doubling, 112<br />

Frequency response, 160<br />

Frequency synthesizers, 167<br />

FRET. See Energy transfer<br />

FR-GPI, 375–377<br />

Front-face illumination, 55<br />

FR-TM, 375–377<br />

Fructose, 651<br />

F-statistic, 133–134, 135, 136, 180<br />

Fumarate, 278<br />

Fura-2, 79, 648<br />

Fusion proteins, 86<br />

G<br />

β-Galactosidase, 79<br />

Gastrin, 590<br />

Gated detection, 124–125<br />

Gated-image intensifier, 747–748<br />

Gating, 819<br />

Gaussian distributions, 487<br />

correlation time, 393<br />

Gaussian lifetime distributions, 143<br />

Gauss-Newton algorithms, 131<br />

Gaviola, 163<br />

GB1, 244–245<br />

Generalized polarization, 218<br />

Genetically engineered proteins<br />

azurins, 538–539<br />

for ribonuclease protein folding studies, 558–559<br />

in sensors, 651–652<br />

spectral properties, 554–557<br />

barnase, 556–557<br />

tyrosine proteins, 557<br />

G-factor, 36, 362, 389<br />

GFP, 86<br />

anisotropy, 377–378<br />

fluorescence-lifetime imaging microscopy, 747<br />

GFP5, 747<br />

GFP sensors, 654–655<br />

Giant unilamellar vesicles (GUVs), 219, 465, 466<br />

fluorescence correlation spectroscopy, 812<br />

Gigahertz fluorometry, 175–178<br />

Glan-Thompson polarizer, 50, 51<br />

Global analysis<br />

anisotropy decay<br />

with multi-wavelength excitation, 429–430<br />

frequency-domain lifetime measurements, 162–163, 182–183<br />

time-domain lifetime measurements, 138, 144–145<br />

Glucagon, 547, 548, 583<br />

Glucose-galactose binding protein (GGBP), 652<br />

Glucose sensors, 650–651<br />

energy-transfer mechanisms, 634–635<br />

Glutamate, 551<br />

Glyceraldehyde phosphate, 555<br />

Glyceraldehyde-3-phosphate dehydrogenase (GPD), 292, 600<br />

Glycerol, 250, 359<br />

Glycopeptides, 495–496<br />

β-Glycosidase, 594<br />

gly-trp-gly, 588<br />

Gold<br />

quenching, 313–315<br />

molecular beacons, 723–724<br />

surface plasmon-coupled emission, 867<br />

Gold colloids, 845–846

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!