22.07.2013 Views

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

Principles of Fluorescence Spectroscopy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

948 INDEX<br />

Rehm-Weller equation, 337<br />

Relaxation, 7, 12<br />

Relaxation dynamics, 237–270<br />

analysis <strong>of</strong> excited-state reactions, 265–270<br />

continuous and two-state spectral relaxation, 237–239<br />

phase modulation studies <strong>of</strong> solvent relaxation, 265–267<br />

excited-state ionization <strong>of</strong> naphthol, 260–262<br />

excited-state processes, overview, 237–240<br />

excited-state reactions, 259–262<br />

lifetime-resolved emission spectra, 255–257<br />

multi-exponential spectral relaxation, measurement, 252–253<br />

picosecond relaxation in solvents, 249–252<br />

multi-exponential relaxation in water, 251–252<br />

theory <strong>of</strong> time-dependent solvent relaxation, 250–251<br />

red-edge excitation shifts, 257–259<br />

energy transfer, 259<br />

membranes, 258–259<br />

solvent relaxation vs. rotational isomer formation, 253–255<br />

time-resolved emission spectra (TRES)<br />

analysis, 246–248<br />

anthroyloxy fatty acids, 248–249<br />

labeled apomyoglobin, 243–244<br />

measurement, 240–242<br />

membranes, spectral relaxation in, 245–249<br />

overview, 239–240<br />

proteins, spectral relaxation in, 242–243<br />

synthetic fluorescent amino acid, 244–245<br />

time-resolved emission spectra (TRES) measurement<br />

direct recording, 240–241<br />

from wavelength-dependent decays, 241–242<br />

TRES vs. DAS, 255<br />

Resonance, surface-plasmon, 861–865<br />

Resonance energy transfer (RET), 13, 144, 375, 443. See also<br />

Energy transfer<br />

applications, 20–21, 490–496<br />

characteristics <strong>of</strong>, 443–445<br />

comparison with quenching, 331–334<br />

distance dependence, 332–333<br />

encounter complexes and quenching efficiency,<br />

333–334<br />

Dexter interaction, 335<br />

and diffusive motions in biopolymers, 501<br />

effects on anisotropy, 364–365<br />

efficiency, 333<br />

literature references, 839<br />

molecular information from fluorescence, 19–20<br />

principles, 13–14<br />

sensors, 626<br />

time-resolved RET imaging, 497–498<br />

Restricted geometries, energy transfer, 516–519<br />

Restriction enzymes, 712–713, 826<br />

Restriction fragment length polymorphisms (RFLPs), 713<br />

RET. See Resonance energy transfer (RET)<br />

Retinal, 522–524<br />

Reversible two-state model, 262–264<br />

differential wavelength methods, 264<br />

steady-state fluorescence <strong>of</strong>, 262–263<br />

time-resolved decays for, 263–264<br />

Rhenium complex, 520<br />

Rhenium metal–ligand complexes, 88, 684, 686<br />

immunoassays, 692–693<br />

spectral properties, 687<br />

Rhod-2, 645<br />

Rhodamine, 2, 3, 20, 314, 315<br />

anisotropy decay, 394, 416<br />

DNA technology, 723, 725, 729<br />

glucose sensor, 635<br />

quantum yield standards, 54<br />

time-resolved RET imaging, 498<br />

Rhodamine 800, 74<br />

Rhodamine B, 51, 279<br />

metal-enhanced fluorescence, 848<br />

Rhodamine derivatives, 74, 76<br />

Förster distances, 468<br />

structures <strong>of</strong>, 74–75<br />

Rhodamine 6G, 122, 514<br />

concentration in fluorescence correlation spectroscopy, 805–806<br />

single-molecule detection, 759–760<br />

Rhodamine 6G dye laser. See R6G laser<br />

Rhodamine green (RhG), 824<br />

Rhodamines, 68–69<br />

Rhodopsin disk membranes, retinal in, 522–524<br />

Rib<strong>of</strong>lavin, 64<br />

Ribonuclease A, 501, 558–559<br />

Ribonuclease T i , 536, 548, 588–589<br />

anisotropy decays, 584, 585<br />

Ribozymes<br />

energy transfer, 460<br />

hairpin, 493<br />

representative literature references, 505<br />

in single-molecule detection, 23–24, 775<br />

Ribozyme substrate binding, 311–312<br />

Rigid rotor, 397–398<br />

Rigid vs. flexible hexapeptide, distance distributions, 479–481<br />

RNA<br />

energy transfer, 459–461<br />

imaging <strong>of</strong> intracellular RNA, 460–461<br />

Room-temperature phosphorescence <strong>of</strong> proteins, 599<br />

Rose bengal, 848<br />

Rotamers (rotational isomers), 253–255, 529, 578–580<br />

Rotational correlation time, 102–103, 353<br />

ellipsoids, 423–425<br />

Rotational diffusion, 12, 13, 102, 168, 365, 422–423, 828–830<br />

anisotropy decay<br />

ellipsoids, theory, 425–426<br />

frequency-domain studies <strong>of</strong>, 427–429<br />

non-spherical molecules, 418–419<br />

time-domain studies <strong>of</strong>, 426–427<br />

membranes, hindered, 399–402<br />

oxytocin, 399<br />

Perrin equation, 366–370<br />

rotational motions <strong>of</strong> proteins, 367–369<br />

stick vs. slip rotational diffusion, 425<br />

Rotational isomer formation, 253–255, 529, 578–580<br />

Rotational motion<br />

measurement <strong>of</strong>, 102<br />

single-molecule detection, 775–779<br />

Rotors<br />

hindered, 391–392<br />

rigid, 397–398<br />

R6G laser, 111, 112, 120<br />

fluorescence intensity distribution analysis, 818, 819<br />

single-molecule detection, 777–778<br />

R3809U, 117

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!